Citation: YUN Qiang, ZHOU Yuan, HAI Chun-Xi, SHEN Yue, LI Xiang, ZHANG Li-Juan, LI Song, DING Xiu-Ping. Hydrothermal Synthesis of Leaf-like LiFePO4/C Cathode Composites[J]. Chinese Journal of Inorganic Chemistry, ;2015, (5): 880-887. doi: 10.11862/CJIC.2015.128 shu

Hydrothermal Synthesis of Leaf-like LiFePO4/C Cathode Composites

  • Corresponding author: ZHOU Yuan, 
  • Received Date: 27 January 2015
    Available Online: 25 February 2015

    Fund Project: 国家高技术研究发展计划(863)(No.2013AA110100) (863)(No.2013AA110100)国家重点基础研究发展计划(973)(No.2014CB660806) (973)(No.2014CB660806)中国科学院“西部之光”人才培养计划(No.Y412041007) (No.Y412041007)2014年西宁市科技项目(No.2014-6-24)资助。 (No.2014-6-24)

  • Highly-dispersed LiFePO4/C composite with micro-leaf structure was synthesized by a facile citric acid-assisted hydrothermal method in this study. Crystal structure and morphology of samples were investigated by XRD, FTIR, SEM, HR-TEM and selected area electron diffraction (SAED). The characterization results indicate that citric acid accelerates the formation of leaf-like LiFePO4/C composite. The as-prepared leaf-like LiFePO4/C composite with an enlarged (010) plane has high dispersibility. By comparing the electrochemical properties of the LiFePO4/C particles in our study, the LiFePO4/C micro-leaves exhibit larger discharge capacity and better rate performance, which deliver a discharge capacity of 158 mAh·g-1 at 0.1C and 126 mAh·g-1 at 5C. The enhanced performance perhaps is attributed to the reduced Li-ion diffusion paths along the [010] direction and larger Li-ion diffusion coefficient.
  • 加载中
    1. [1]

      [1] Whittingham M S. Chem. Rev., 2014,114(23):11414-11443

    2. [2]

      [2] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Elect-rochem. Soc., 1997,144(4):1188-1194

    3. [3]

      [3] Xie G, Zhu H J, Liu X M, et al. J. Alloys Compd., 2013, 574:155-160

    4. [4]

      [4] Lu Z G, Cheng H, Lo M F, et al. Adv. Funct. Mater., 2007, 17(18):3885-3896

    5. [5]

      [5] Hu Y S, Guo Y G, Dominko R, et al. Adv. Mater., 2007,19 (15):1963-1966

    6. [6]

      [6] Nguyen V H, Wang W L, Jin E M, et al. J. Alloys Compd., 2013,569:29-34

    7. [7]

      [7] Li H Q, Zhou H S. Chem. Commun., 2012,48(9):1201-1217

    8. [8]

      [8] Chung S Y, Chiang Y M. Electrochem. Solid-State Lett., 2003, 6(12):A278-A281

    9. [9]

      [9] LUO Liang(罗亮), CAO Yan-Bing(曹雁冰), DU Ke(杜柯), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(9): 2000-2005

    10. [10]

      [10] Yang H, Wu X L, Cao M H, et al. J. Phys. Chem. C, 2009, 113(8):3345-3351

    11. [11]

      [11] Pei B, Yao H X, Zhang W X, et al. J. Power Sources, 2012, 220:317-323

    12. [12]

      [12] Saravanan K, Balaya P, Reddy M V, et al. Energy Environ. Sci., 2010,3(4):457-463

    13. [13]

      [13] DONG Jing(董静), ZHONG Ben-He(钟本和), ZHONG Yan-Jun(钟艳君), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013,29(10):2257-2264

    14. [14]

      [14] Islam M S, Driscoll D J, Fisher C A, et al. Chem. Mater., 2005,17(20):5085-5092

    15. [15]

      [15] Fisher C A, Islam M S. J. Mater. Chem., 2008,18(11):1209-1215

    16. [16]

      [16] Mei R G, Song X R, Yang Y F, et al. RSC Adv., 2014,4 (11):5746-5752

    17. [17]

      [17] Ma Z P, Shao G J, Wang X, et al. Mater. Chem. Phys., 2014, 143(3):969-976

    18. [18]

      [18] HUANG Fu-Qin(黄富勤), TANG Xin-Chun(唐新春), XIAO Yuan-Hua(肖元化), et al. Chinese J. Inorg. Chem.(无机化 学学报), 2014,30(2):235-241

    19. [19]

      [19] Doeff M M, Wilcox J D, Kostecki R G, et al. J. Power Sources, 2006,163(1):180-184

    20. [20]

      [20] Du J, Jiao L F, Wu Q, et al. Electrochim. Acta, 2013,98: 288-293

    21. [21]

      [21] Muraliganth T, Murugan A V, Manthiram A. J. Mater. Chem., 2008,18(46):5661-5668

    22. [22]

      [22] Wu G, Zhou Y K, Shao Z P. Appl. Surf. Sci., 2013,283:999-1005

    23. [23]

      [23] Qin X, Wang X H, Xiang H M, et al. J. Phys. Chem. C, 2010,114(39):16806-16812

    24. [24]

      [24] Kim D H, Kim J. Electrochem. Solid-State Lett., 2006,9(9): A439-A442

  • 加载中
    1. [1]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    2. [2]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    3. [3]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    4. [4]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    5. [5]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    6. [6]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    9. [9]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    12. [12]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    15. [15]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    18. [18]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    19. [19]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    20. [20]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

Metrics
  • PDF Downloads(0)
  • Abstract views(353)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return