Citation: LIU Qin-Fu, JI Yang, DU Yan-Na, LI Xiao-Guang, LIANG Peng. Characterization and Deintercalation Kinetics of Kaolinite/γ-Aminopropyltriethoxysilane Intercalation Complex[J]. Chinese Journal of Inorganic Chemistry, ;2015, (3): 501-508. doi: 10.11862/CJIC.2015.096 shu

Characterization and Deintercalation Kinetics of Kaolinite/γ-Aminopropyltriethoxysilane Intercalation Complex

  • Corresponding author: LIU Qin-Fu, 
  • Received Date: 18 September 2014
    Available Online: 13 December 2014

    Fund Project: 国家自然科学基金重点项目(No.51034006)资助。 (No.51034006)

  • The kaolinite/γ-aminopropyltriethoxysilane (K/APTES) was prepared with a direct displacement intercalation method by using kaolinite/methanol intercalation complex as an intermediate.The samples were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and TEM analysis.Analysis suggested that the amidogen of APTES forms hydrogen bonds with tetrahedron siloxane and interlayer methoxy group of the kaolinite/methanol intercalation complex. The APTES molecules are arranged in double layer aslant between the kaolinite layers, and the inclination angle is related to the temperature. Because of hydrogen bonds are broken by APTES, the K/APTES intercalation compound appears clear scroll and exfoliation. The kinetic triplet of APTES' deintercalation from K/APTES intercalation complex was calculated by Satava integral method and Achar-Brindley-Sharp-Wendworth differential method. The activation energy E is 197.8 kJ·mol-1, the logarithm of pre-exponential factor lg(A/s-1) is 14.60. The mechanism function is G(α)=α+(1-α)ln(1-α) and f(α)=[-ln(1-α)]-1.
  • 加载中
    1. [1]

      [1] CHEN Shi-Rong(陈世容), QU Wan-Xing(瞿晚星), XU Ka-Qiu(徐卡秋). Silicone Material(有机硅材料), 2003,17(5): 28-31

    2. [2]

      [2] YANG Shu-Qin(杨淑勤), YUAN Peng(袁鹏), HE Hong-Ping (何宏平), et al. Acta Mineralogica Sinica(矿物学报), 2012, 32(4):10-16

    3. [3]

      [3] Ledoux R L, White J L. J. Colloid Interface Sci., 1966,21(2): 127-152

    4. [4]

      [4] Frost R L, Locos O, Kristof J, et al. Vib. Spectrosc., 2001,26 (1):33-42

    5. [5]

      [5] Frost R L, Kristof J, Kloprogge J T. Spectrochim Acta: Part A, 2001,57:603-609

    6. [6]

      [6] Mako, Kristof J, Horvath E, et al. J. Colloid Interface Sci., 2009,330(2):367-373

    7. [7]

      [7] Tsunematsu K, Tateyama H. J. Am. Ceram. Soc., 1999,82(6): 1589-1591

    8. [8]

      [8] ZHANG Yin-Min(张印民), LIU Qin-Fu(刘钦甫), WU Ze-Guang(伍泽广), et al. J. Chinese Ceram. Soc.(硅酸盐学报), 2011,39(10):113-119

    9. [9]

      [9] Frost R L, Kristof J, Horvath E, et al. Thermachim Acta, 1999,327(1/2):155-166

    10. [10]

      [10] Gardolinski J E, Carrera L C M, Cantao M P, et al. J. Mater. Sci., 2000,35(12):3113-3119

    11. [11]

      [11] Cruz M D R, Franco F. Clays Clay Miner., 2000,48(1):63-67

    12. [12]

      [12] CHEN Zu-Xiong(陈祖熊), YAN Wei(颜卫), WANG Jian(王 坚), et al. J. Build. Mater.(建筑材料学报), 2000,3(2):151-155

    13. [13]

      [13] Frost R L, Kristof J, Horvath E, et al. Spectrochim Acta, 2000,56(9):1711-1729

    14. [14]

      [14] Tonlé I K, Diaco T, Ngameni E, et al. Chem. Mater., 2007, 19(26):6629-6636

    15. [15]

      [15] Guerra D L, Oliveira S P, Silva R A S, et al. Ceram. Int., 2011,38(2):1687-1696

    16. [16]

      [16] Komori Y, Enoto H, Takenawa R, et al. Langmuir, 2000,16 (12):5506-5508

    17. [17]

      [17] FENG Li(冯莉), LIN Zhe(林喆), LIU Jiong-Tian(刘炯天), et al. J. Chinese Ceram. Soc.(硅酸盐学报), 2006,34(10): 1226-1231

    18. [18]

      [18] DU Xiao-Man(杜小满), LIU Qin-Fu(刘钦甫), CHENG Hong -Fei(程宏飞), et al. China Non-Metallic Min. Ind.(中国非金 属矿工业导刊), 2009(6):12-16

    19. [19]

      [19] HU Rong-Zu(胡荣祖), SHI Qi-Zhen(史启祯). Thermal Analysis Kinetics(热分析动力学). Beijing: Science Press, 2001.

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    3. [3]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    4. [4]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    8. [8]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(0)
  • Abstract views(553)
  • HTML views(197)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return