Citation: ZHAO Er-Zheng, PENG Tong-Jiang, SUN Hong-Juan, LIU Bo, JI Guang-Fu. Molecular Simulation of Structure of Cetyl Trimethyl Ammonium Bromide Intercalated Graphite Oxide[J]. Chinese Journal of Inorganic Chemistry, ;2015, (3): 485-492. doi: 10.11862/CJIC.2015.081 shu

Molecular Simulation of Structure of Cetyl Trimethyl Ammonium Bromide Intercalated Graphite Oxide

  • Corresponding author: PENG Tong-Jiang, 
  • Received Date: 27 August 2014
    Available Online: 12 December 2014

    Fund Project: 国家自然科学基金(No.41272051) (No.41272051)西南科技大学博士基金(No.11ZX7135)资助项目。 (No.11ZX7135)

  • The structure changes of C16TAB/GO intercalation compounds about the number of cetyl trimethyl ammonium bromide(C16TAB) molecules were investigated by molecular simulation method. The arrangement modes of C16TAB molecules in the interlayer of GO were discussed, and the simulation results were verified by the experimental data. The simulation results show that the layer spacing of the structural model of GO is 0.849 nm; the layer spacing of C16TAB/GO intercalation compounds increases gradually by five ladderlike style with the increase of the number of C16TAB molecules. The layer spacing of each ladder are 1.56, 1.98, 2.33, 2.76 and 3.40 nm, and the number of C16TAB molecules is up to 28 when the intercalation is saturated. The experimental results show that the layer spacing of C16TAB/GO intercalation compounds increases gradually with the increase of the number of C16TAB molecules and the saturation value is 3.40 nm, so the experimental results are in good agreement with simulation results. The possible arrangement modes of C16TAB molecules in the interlayer of GO are 1~5 layers lateral arrangement or lateral monolayer, paraffin-type monolayer and vertical monolayer, and the optimal arrangement modes of C16TAB molecules in the interlayer of GO are 1~5 layers lateral arrangement according to the result of energy and structure.
  • 加载中
    1. [1]

      [1] Nakajima T, Mabuchi A, Hagiwara R. Carbon, 1988,26(3): 357-361

    2. [2]

      [2] He H, Klinowski J, Forster M, et al. Chem. Phys. Lett., 1998,287(1):53-56

    3. [3]

      [3] Lerf A, He H, Forster M, et al. J. Phys. Chem. B, 1998,102 (23):4477-4482

    4. [4]

      [4] Boukhvalov D W, Katsnelson M I. J. Am. Chem. Soc., 2008, 130(32):10697-10701

    5. [5]

      [5] YANG Jian-Guo(杨建国), NIU Wen-Xin(牛文新), LI Jian-She(李建设), et al. Polym. Mater. Sci. Eng.(高分子材料科学 与工程), 2005,21(5):55-58

    6. [6]

      [6] Mermoux M, Chabre Y, Rousseau A. Carbon, 1991,29(3): 469-474

    7. [7]

      [7] Matsuo Y, Niwa T, Sugie Y. Carbon, 1999,37(6):897-901

    8. [8]

      [8] Xu S, Boyd S A. Environ. Sci. Technol., 1995,29(2):312-320

    9. [9]

      [9] Williams D S, Thomas R K, Castro M A, et al. J. Colloid Interface Sci., 2003,267(2):265-271

    10. [10]

      [10] HAN Zhi-Dong(韩志东), WANG Jian-Qi(王建祺). Chinese J. Inorg. Chem.(无机化学学报), 2003,5(19):459-461

    11. [11]

      [11] Liu Z H, Wang Z M, Yang X J. Langmuir, 2002,18(12):4926-4932

    12. [12]

      [12] Matsuo Y, Miyabe T, Fukutsuka T, et al. Carbon, 2007,45 (5):1005-1012

    13. [13]

      [13] LIN Shun-Jia(林舜嘉), SUN Hong-Juan(孙红娟), PENG Tong-Jiang(彭同江), et al. Chinese J. Inorg. Chem.(无机化 学学报), 2013,29(11):2333-2338

    14. [14]

      [14] Hackett E, Manias E, Giannelis E P. J. Chem. Phys., 1998, 108(17):7410-7415

    15. [15]

      [15] Zeng Q H, Yu A B, Lu G Q, et al. Chem. Mater., 2003,15 (25):4732-4738

    16. [16]

      [16] Miroslav P, Pavla C, Dagmar M, et al. J. Colloid Interface Sci., 2001,236(1):127-131

    17. [17]

      [17] Miroslav P, Pavla C, Dagmar M, et al. J. Colloid Interface Sci., 2002,245(1):126-132

    18. [18]

      [18] FU Yi-Zheng(付一政), LIAO Li-Qiong(廖黎琼), LIANG Xiao-Yan(梁晓艳), et al. Polym. Mater. Sci. Eng.(高分子材料 科学与工程), 2013,29(7):175-178

    19. [19]

      [19] Liu B, Sun H J, Peng T J, et al. J. Mol. Model., 2012:1-6

    20. [20]

      [20] Rappé A K, Casewit C J, Colwell K S, et al. J. Am. Chem. Soc., 1992,114(25):10024-10035

    21. [21]

      [21] Frenkel D, Smit B, Translated by WANG Wen-Chuan(汪文 川), ZHOU Jian(周健), CAO Da-Peng(曹大鹏). Understand-ing Molecular Simulation-From Algorithms to Applications (分子模拟-从算法到应用). Beijing: Chemical Industry Press, 2002:329-338

    22. [22]

      [22] FU Ling(傅玲), LIU Hong-Bo(刘洪波), ZOU Yan-Hong(邹 艳红), et al. Carbon(炭素), 2005(4):10-14

    23. [23]

      [23] HUANG Qiao(黄桥), SUN Hong-Juan(孙红娟), YANG Yong-Hui(杨勇辉). Chinese J. Inorg. Chem.(无机化学学 报), 2011,27(9):1721-1726

    24. [24]

      [24] DING Yun-Sheng(丁运生), WANG Seng-Shan(王僧山), ZHA Min(查敏). Acta Phys.-Chim. Sin.(物理化学学报), 2006,22(5):548-551

    25. [25]

      [25] Le P L, Duchet J, Sautereau H, et al. Macromol. Symp., 2003,194(1):155-160

    26. [26]

      [26] LIN Bao-Hui(林宝辉), GAO Mang Mang-Lai(高芒来). Acta Phys.-Chim. Sin.(物理化学学报), 2005,21(7): 808-812

    27. [27]

      [27] LI Lin-Jiang(李林江), HU Dong-Hu(胡栋虎), JI Ling-Li(季 伶俐), et al. J. Funct. Mater.(功能材料), 2011,42(B02):168-172

    28. [28]

      [28] ZOU Yan-Hong(邹艳红), LIU Hong-Bo(刘洪波), FU Ling (傅玲), et al. Journal of the Chinese Ceramic Society(硅酸 盐学报), 2006,34(3):318-323

    29. [29]

      [29] ZHOU Gong-Du(周公度). Structural Chemistry of Inorganic (无机结构化学). Beijing: Science Press, 1984:118-119

    30. [30]

      [30] He H P, Frost R L, Bostrom T, et al. Appl. Clay Sci., 2006, 31(3):262-271

    31. [31]

      [31] Zhu J X, He H P, Guo J G, et al. Chin. Sci. Bull., 2003,48 (4):368-372

    32. [32]

      [32] Williams D S, Thomas R K. J. Colloid Interface Sci., 2002, 255:303-311

    33. [33]

      [33] Slade P G, Gates W P. Appl. Clay Sci., 2004,25(1):93-101

    34. [34]

      [34] CHEN De-Fang(陈德芳), WANG Zhong(王重). J. Xi'an Jiaotong University(西安交通大学学报), 2000,34(8): 92-95

    35. [35]

      [35] Vaia R A, Teukolsky R K, Giannelis E P. Chem. Mater., 1994,6(7):1017-1022

    36. [36]

      [36] Vahedi F A, Guggenheim S. Clays Clay Miner., 1997,45(6): 859-866

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    12. [12]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    15. [15]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    16. [16]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    19. [19]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    20. [20]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

Metrics
  • PDF Downloads(0)
  • Abstract views(670)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return