Citation: ZHENG Long-Zhen, KANG Xiao-Wei, JI Yi, ZOU Zhi-Jun, WANG Yi-Min, CHEN Ji-Fang. Preparation of Ag/ZIF-90 Self-Assembled Membrane and Its High SERS Performance[J]. Chinese Journal of Inorganic Chemistry, ;2015, (3): 465-471. doi: 10.11862/CJIC.2015.079 shu

Preparation of Ag/ZIF-90 Self-Assembled Membrane and Its High SERS Performance

  • Corresponding author: ZHENG Long-Zhen, 
  • Received Date: 16 August 2014
    Available Online: 7 November 2014

    Fund Project: 国家自然科学基金(No.21163007, 21165009, 21465011) (No.21163007, 21165009, 21465011) 江西省主要学科学术和技术带头人计划(No.20133BCB22007) (No.20133BCB22007)江西省自然科学 基金(No.20132BAB203012)资助项目。 (No.20132BAB203012)

  • Zeolitic imidazolate framework-90 (ZIF-90) sol-gel and ZIF-90 crystal membrane were prepared. Then silver nanoparticles(Ag NPs) were hosted in the ZIF-90 sol-gel or on the ZIF-90 crystal membrane to form Ag@ZIF-90 composite or Ag/ZIF-90 self-assembled membrane. The Ag@ZIF-90 composite and Ag/ZIF-90 self-assembled membrane were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) to show their morphorogies and structural features. Rhodamine 6G (R 6G) was used as a detection molecule to test the surface enhanced Raman scattering (SERS) performance of Ag@ZIF-90 composite and Ag/ZIF-90 self-assembled membrane. The SERS signal of R 6G on Ag/ZIF-90 self-assembled membrane was much higher than that on Ag@ZIF-90 composite and the background peak of ZIF-90 did not affect the SERS detection. The Ag/ZIF-90 self-assembled membrane was a promising active SERS substrate, which can be applied in the trace detection of pesticide residue.
  • 加载中
    1. [1]

      [1] Silva C, Corma A, García H. J. Mater. Chem., 2010,20:3141 -3156

    2. [2]

      [2] Kreno L, Leong K, Farha O, et al. Chem. Rev., 2011,112: 1105-1125

    3. [3]

      [3] Bétard A, Fischer R. Chem. Rev., 2011,112:1055-1083

    4. [4]

      [4] Guo H, Zhu G, Hewitt I, et al. J. Am. Chem. Soc., 2009,131: 1646-1647

    5. [5]

      [5] Nan J, Dong X, Wang W, et al. Langmuir, 2011,27:4309-4312

    6. [6]

      [6] Yoo Y, Varela-Guerrero V, Jeong H. Langmuir, 2011,27: 2652-2657

    7. [7]

      [7] Yao J, Dong D, Li D, et al. Chem. Commun., 2011,47:2559-2561

    8. [8]

      [8] Park K S, Ni Z, Cté A, et al. Proc. Natl. Acad. Sci. U.S.A., 2006,103:10186-10191

    9. [9]

      [9] Banerjee R, Phan A, Wang B, et al. Science, 2008,319:939-943

    10. [10]

      [10] Phan A, Doonan C, Uribe-Romo F, et al. Acc. Chem. Res., 2010,43:58-67

    11. [11]

      [11] Li Y, Liang F, Bux H, et al. Angew. Chem. Int. Ed., 2010, 122:558-561

    12. [12]

      [12] Shekhah O, Eddaoudi M. Chem. Commun., 2013,49:10079-10081

    13. [13]

      [13] Huang A, Bux H, Steinbach F, et al. Angew. Chem. Int. Ed., 2010,122:5078-5081

    14. [14]

      [14] Hou X, Li H. J. Phys. Chem. C, 2010,114:13501-13508

    15. [15]

      [15] Liu Y, Hu E, Khan E, et al. J. Membr. Sci., 2010,353:36-40

    16. [16]

      [16] Bae T, Lee J, Qiu W, et al. Angew. Chem. Int. Ed., 2010, 49:9863-9866

    17. [17]

      [17] Huang A, Dou W, Caro J. J. Am. Chem. Soc., 2010,132: 15562-15564

    18. [18]

      [18] Huang A, Wang N, Kong C, et al. Angew. Chem. Int. Ed., 2012,51:10551-10555

    19. [19]

      [19] Esken D, Turner S, Lebedev O, et al. Chem. Mater., 2010, 22:6393-6401

    20. [20]

      [20] Kontos A, Likodimos V, Veziri C, et al. ChemSusChem, 2014,7:1696-1702

    21. [21]

      [21] HUANG Qing-Li(黄庆利), ZHU Xia-Shi(朱霞石). Chinese J. Inorg. Chem.(无机化学学报), 2014,30(2):442-450

    22. [22]

      [22] MENG Wei(孟卫), ZHANG Ling-Yan(张玲艳), JIANG Xiao-Hong(江晓红), et al. Chinese J. Inorg. Chem.(无机化 学学报), 2013,29(3):571-576

    23. [23]

      [23] XIAO Gui-Na(肖桂娜), MAN Shi-Qing(满石清), LIU Ying-Liang(刘应亮), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2007,23(10):1738-1742

    24. [24]

      [24] Ikeda K, Suzuki S, Uosaki K. J. Am. Chem. Soc., 2013,135: 17387-17392

    25. [25]

      [25] Driskell J, Shanmukh S, Liu Y, et al. J. Phys. Chem. C, 2008,112:895-901

    26. [26]

      [26] Sun Y, Xia Y. Nano Lett., 2003,3:675-679

    27. [27]

      [27] Siekkinen A, McLellan J, Chen J, et al. Chem. Phys. Lett., 2006,432:491-496

    28. [28]

      [28] Rycenga M, Langille M, Personick M, et al. Nano Lett., 2012,12:6218-6222

  • 加载中
    1. [1]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    2. [2]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    3. [3]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    4. [4]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    5. [5]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    8. [8]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    13. [13]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    16. [16]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    17. [17]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    18. [18]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    19. [19]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    20. [20]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

Metrics
  • PDF Downloads(0)
  • Abstract views(265)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return