Citation:
REN Dong-Hong, LIU Zhi-Ming, SUN Xiao-Li, GU Ling, QIU Dan, GU Zhi-Guo, LI Zai-Jun. Syntheses, Structures and Magnetic Properties of Homochiral Spin-Crossover Iron(Ⅱ) Schiff-Base Complexes[J]. Chinese Journal of Inorganic Chemistry,
;2015, (3): 536-542.
doi:
10.11862/CJIC.2015.040
-
Two homochiral mononuclear spin-crossover iron(Ⅱ) complexes, namely, fac-Λ-[Fe(R-L1)3](ClO4)2 (1), fac-Λ-[Fe(R-L2)3](ClO4)2 (2) have been successfully synthesized by subcomponent self-assembly of Fe(ClO4)2, 4-(imidazole-2-carboxaldehyde)butyronitrile and optical phenylethylamine derivatives. The two complexes have been determined by single-crystal X-ray diffraction analysis, elemental analysis, IR spectra, 1H NMR spectra, UV spectra and CD spectra. X-ray crystallography revealed that the iron(Ⅱ) center in 1 and 2 assumed an octahedral coordination environment with six N donor atoms from three unsymmetrical bidentate chiral schiff-base ligands. Each unit contained one [Fe(L)3]2+ cation and two ClO4- anions. [Fe(L)3]2 components were chiral with Λ configuration due to the screw coordination arrangement of the chiral ligand around Fe(Ⅱ) centers. The Fe(Ⅱ)-N bond distances indicated that the Fe(Ⅱ) sites of 1 and 2 were in low-spin state. As for [Fe(L)3]2+, intramolecular π-π interactions were present between phenyl group and imidazole ring of an adjacent ligand. In 1 and 2, 3D supramolecular architectures were formed through intermolecular C-H…π interactions. Circular dichromism spectra confirmed the presence of non-racemic chiral metal centers in solution for complexes 1 and 2. Magnetic measurements revealed that 1 and 2 displayed obviously spin-crossover behaviour at 232 and 250 K, respectively. Complexes 1 and 2 crystallized in the same chiral space group with similar packing modes and intermolecular interactions, therefore their different SCO bahaviors mainly resulted from substitution effect.
-
-
-
[1]
[1] Halcrow M A. Chem. Soc. Rev., 2011,40:4119-4142
-
[2]
[2] Gütlich P, Hauser A, Spiering H. Angew. Chem. Int. Ed., 1994,33:2024-2054
-
[3]
[3] Guionneau P. Dalton Trans., 2014,43:382-393
-
[4]
[4] Tian H, Feng Y L. J. Mater. Chem., 2008,18:1617-1622
-
[5]
[5] Ferrere S, Gregg B A. J. Am. Chem. Soc., 1998,120:843-844
-
[6]
[6] Bousseksou A, Molnár G, Salmon L, et al. Chem. Soc. Rev., 2011,40:3313-3335
-
[7]
[7] Verdejo B, Gil-Ramirez G, Ballester P. J. Am. Chem. Soc., 2009,131:3178-3179
-
[8]
[8] Matouzenko G S, Jeanneau E, Verat A Y, et al. Dalton Trans., 2011,40:9608-9618
-
[9]
[9] Takahashi O, Kohno Y, Nishio M. Chem. Rev., 2010,110: 6049-6076
-
[10]
[10] Nihei M, Takahashi N, Nishikawa H, et al. Dalton Trans., 2011,40:2154-2156
-
[11]
[11] Faulmann C, Jacob K, Dorbes S, et al. Inorg. Chem., 2007,46:8548-8559
-
[12]
[12] Gaspar A B, Seredyuk M, Güetlich P. Coord. Chem. Rev., 2009,253:2399-2413
-
[13]
[13] Hayami S, Danjobara K, Inoue K, et al. Adv. Mater., 2004, 16:869-872
-
[14]
[14] Nihei M, Sekine Y, Suganami N, et al. J. Am. Chem. Soc., 2011,133:3592-3600
-
[15]
[15] (a)Salmon L, Molnar G, Zitouni D, et al. J. Mater. Chem., 2010,20:5499-5503
-
[16]
(b)Gaspar A B, Ksenofontov V, Seredyuk M, et al. Coord. Chem. Rev., 2005,249:2661-2676
-
[17]
(c)Lacroix P G, Malfant I, Real J A, et al. Eur. J. Inorg. Chem., 2013,615-627
-
[18]
[16] Rikken G L J A, Raupach E. Nature, 1997,390:493-494
-
[19]
[17] Barron L D. Nature, 2000,405:895-896
-
[20]
[18] (a)Marcelo C, Sara G F, Ramon G M J. Adv. Mater., 2012, 24:3120-3123
-
[21]
(b)Cai H L, Zhang Y, Fu D W, et al. J. Am. Chem. Soc., 2012,134:18487-18490
-
[22]
(c)Xu G C, Zhang W, Ma X M, et al. J. Am. Chem. Soc., 2011,133:14948-14951
-
[23]
[19] Train C, Gheorghe R, Krstic V, et al. Nat. Mater., 2008,7: 729-734
-
[24]
[20] (a)Fu D W, Zhang W, Cai H L, et al. Angew. Chem. Int. Ed., 2011,50:11947-11951
-
[25]
(b)Liu C M, Xiong R G, Zhang D Q, et al. J. Am. Chem. Soc., 2010,132:4044-4045
-
[26]
(c)Cui H B, Wang Z M, Takahashi K, et al. J. Am. Chem. Soc., 2006,128:15074-15075
-
[27]
(d)Ohkoshi S I, Tokoro H, Matsuda T, et al. Angew. Chem. Int. Ed., 2007,3302-3305
-
[28]
[21] SAINT-Plus, Version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.
-
[29]
[22] Sheldrick G M. SADABS An Empirical Absorption Correction Program, Bruker Analytical X-ray Systems, Madison, WI, 1996.
-
[30]
[23] Sheldrick G M. SHELXTL-97, University of Göttingen, Germany, 1997.
-
[31]
[24] Ulrich K, Alex V Z. Angew. Chem. Int. Ed., 1999,38: 302-322
-
[32]
[25] Nishida Y, Kino K, Kida S. Dalton Trans., 1987,5:1157 -1161
-
[33]
[26] Koenig E. Prog. Inorg. Chem., 1987,35:527-623
-
[34]
[27] Vankó G, Glatzel P, Pham V T, et al. Angew. Chem. Int. Ed., 2010,49:5910-5912
-
[35]
[28] Niel V, Martinez-Agudo J M, Muñoz M C. Inorg. Chem., 2001,40:3838-3839
-
[36]
[29] Yamada M, Hagiwara H, Torigoe H. Eur. J. Inorg. Chem., 2006,12:4536-4549
-
[37]
[30] Nishi K, Matsumoto N, Iijima S. Inorg. Chem., 2011,50: 11303-11305
-
[1]
-
-
-
[1]
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
-
[2]
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
-
[3]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[4]
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
-
[5]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[6]
Ruiying WANG , Hui WANG , Fenglan CHAI , Zhinan ZUO , Benlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052
-
[7]
Conghao Shi , Ranran Wang , Juli Jiang , Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034
-
[8]
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
-
[9]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[10]
Yuanyu YANG , Jianhua XUE , Yujia BAI , Lulu CUI , Dongdong YANG , Qi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005
-
[11]
Yanyang Li , Zongpei Zhang , Kai Li , Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020
-
[12]
Dongheng WANG , Si LI , Shuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379
-
[13]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[14]
Qiuting Zhang , Fan Wu , Jin Liu , Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174
-
[15]
Qingjun PAN , Zhongliang GONG , Yuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365
-
[16]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[17]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[18]
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
-
[19]
Haiying Wang , Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004
-
[20]
Keying Qu , Jie Li , Ziqiu Lai , Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(441)
- HTML views(50)