Citation: REN Dong-Hong, LIU Zhi-Ming, SUN Xiao-Li, GU Ling, QIU Dan, GU Zhi-Guo, LI Zai-Jun. Syntheses, Structures and Magnetic Properties of Homochiral Spin-Crossover Iron(Ⅱ) Schiff-Base Complexes[J]. Chinese Journal of Inorganic Chemistry, ;2015, (3): 536-542. doi: 10.11862/CJIC.2015.040 shu

Syntheses, Structures and Magnetic Properties of Homochiral Spin-Crossover Iron(Ⅱ) Schiff-Base Complexes

  • Corresponding author: GU Zhi-Guo, 
  • Received Date: 17 October 2014
    Available Online: 10 November 2014

    Fund Project: 国家自然科学基金(No.21101078, 21276105) (No.21101078, 21276105)新世纪优秀人才计划(No.NCET-11-0657) (No.NCET-11-0657) 江苏省自然科学基金(No.BK2011143)资助。 (No.BK2011143)

  • Two homochiral mononuclear spin-crossover iron(Ⅱ) complexes, namely, fac-Λ-[Fe(R-L1)3](ClO4)2 (1), fac-Λ-[Fe(R-L2)3](ClO4)2 (2) have been successfully synthesized by subcomponent self-assembly of Fe(ClO4)2, 4-(imidazole-2-carboxaldehyde)butyronitrile and optical phenylethylamine derivatives. The two complexes have been determined by single-crystal X-ray diffraction analysis, elemental analysis, IR spectra, 1H NMR spectra, UV spectra and CD spectra. X-ray crystallography revealed that the iron(Ⅱ) center in 1 and 2 assumed an octahedral coordination environment with six N donor atoms from three unsymmetrical bidentate chiral schiff-base ligands. Each unit contained one [Fe(L)3]2+ cation and two ClO4- anions. [Fe(L)3]2 components were chiral with Λ configuration due to the screw coordination arrangement of the chiral ligand around Fe(Ⅱ) centers. The Fe(Ⅱ)-N bond distances indicated that the Fe(Ⅱ) sites of 1 and 2 were in low-spin state. As for [Fe(L)3]2+, intramolecular π-π interactions were present between phenyl group and imidazole ring of an adjacent ligand. In 1 and 2, 3D supramolecular architectures were formed through intermolecular C-H…π interactions. Circular dichromism spectra confirmed the presence of non-racemic chiral metal centers in solution for complexes 1 and 2. Magnetic measurements revealed that 1 and 2 displayed obviously spin-crossover behaviour at 232 and 250 K, respectively. Complexes 1 and 2 crystallized in the same chiral space group with similar packing modes and intermolecular interactions, therefore their different SCO bahaviors mainly resulted from substitution effect.
  • 加载中
    1. [1]

      [1] Halcrow M A. Chem. Soc. Rev., 2011,40:4119-4142

    2. [2]

      [2] Gütlich P, Hauser A, Spiering H. Angew. Chem. Int. Ed., 1994,33:2024-2054

    3. [3]

      [3] Guionneau P. Dalton Trans., 2014,43:382-393

    4. [4]

      [4] Tian H, Feng Y L. J. Mater. Chem., 2008,18:1617-1622

    5. [5]

      [5] Ferrere S, Gregg B A. J. Am. Chem. Soc., 1998,120:843-844

    6. [6]

      [6] Bousseksou A, Molnár G, Salmon L, et al. Chem. Soc. Rev., 2011,40:3313-3335

    7. [7]

      [7] Verdejo B, Gil-Ramirez G, Ballester P. J. Am. Chem. Soc., 2009,131:3178-3179

    8. [8]

      [8] Matouzenko G S, Jeanneau E, Verat A Y, et al. Dalton Trans., 2011,40:9608-9618

    9. [9]

      [9] Takahashi O, Kohno Y, Nishio M. Chem. Rev., 2010,110: 6049-6076

    10. [10]

      [10] Nihei M, Takahashi N, Nishikawa H, et al. Dalton Trans., 2011,40:2154-2156

    11. [11]

      [11] Faulmann C, Jacob K, Dorbes S, et al. Inorg. Chem., 2007,46:8548-8559

    12. [12]

      [12] Gaspar A B, Seredyuk M, Güetlich P. Coord. Chem. Rev., 2009,253:2399-2413

    13. [13]

      [13] Hayami S, Danjobara K, Inoue K, et al. Adv. Mater., 2004, 16:869-872

    14. [14]

      [14] Nihei M, Sekine Y, Suganami N, et al. J. Am. Chem. Soc., 2011,133:3592-3600

    15. [15]

      [15] (a)Salmon L, Molnar G, Zitouni D, et al. J. Mater. Chem., 2010,20:5499-5503

    16. [16]

      (b)Gaspar A B, Ksenofontov V, Seredyuk M, et al. Coord. Chem. Rev., 2005,249:2661-2676

    17. [17]

      (c)Lacroix P G, Malfant I, Real J A, et al. Eur. J. Inorg. Chem., 2013,615-627

    18. [18]

      [16] Rikken G L J A, Raupach E. Nature, 1997,390:493-494

    19. [19]

      [17] Barron L D. Nature, 2000,405:895-896

    20. [20]

      [18] (a)Marcelo C, Sara G F, Ramon G M J. Adv. Mater., 2012, 24:3120-3123

    21. [21]

      (b)Cai H L, Zhang Y, Fu D W, et al. J. Am. Chem. Soc., 2012,134:18487-18490

    22. [22]

      (c)Xu G C, Zhang W, Ma X M, et al. J. Am. Chem. Soc., 2011,133:14948-14951

    23. [23]

      [19] Train C, Gheorghe R, Krstic V, et al. Nat. Mater., 2008,7: 729-734

    24. [24]

      [20] (a)Fu D W, Zhang W, Cai H L, et al. Angew. Chem. Int. Ed., 2011,50:11947-11951

    25. [25]

      (b)Liu C M, Xiong R G, Zhang D Q, et al. J. Am. Chem. Soc., 2010,132:4044-4045

    26. [26]

      (c)Cui H B, Wang Z M, Takahashi K, et al. J. Am. Chem. Soc., 2006,128:15074-15075

    27. [27]

      (d)Ohkoshi S I, Tokoro H, Matsuda T, et al. Angew. Chem. Int. Ed., 2007,3302-3305

    28. [28]

      [21] SAINT-Plus, Version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.

    29. [29]

      [22] Sheldrick G M. SADABS An Empirical Absorption Correction Program, Bruker Analytical X-ray Systems, Madison, WI, 1996.

    30. [30]

      [23] Sheldrick G M. SHELXTL-97, University of Göttingen, Germany, 1997.

    31. [31]

      [24] Ulrich K, Alex V Z. Angew. Chem. Int. Ed., 1999,38: 302-322

    32. [32]

      [25] Nishida Y, Kino K, Kida S. Dalton Trans., 1987,5:1157 -1161

    33. [33]

      [26] Koenig E. Prog. Inorg. Chem., 1987,35:527-623

    34. [34]

      [27] Vankó G, Glatzel P, Pham V T, et al. Angew. Chem. Int. Ed., 2010,49:5910-5912

    35. [35]

      [28] Niel V, Martinez-Agudo J M, Muñoz M C. Inorg. Chem., 2001,40:3838-3839

    36. [36]

      [29] Yamada M, Hagiwara H, Torigoe H. Eur. J. Inorg. Chem., 2006,12:4536-4549

    37. [37]

      [30] Nishi K, Matsumoto N, Iijima S. Inorg. Chem., 2011,50: 11303-11305

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    6. [6]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    7. [7]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    8. [8]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    11. [11]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    12. [12]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    13. [13]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    14. [14]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    15. [15]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    16. [16]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    17. [17]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    18. [18]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    19. [19]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    20. [20]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

Metrics
  • PDF Downloads(0)
  • Abstract views(441)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return