Citation: HUANG Yi-Cao, ZHAO Zhe-Fei, LI Shi-Xiong, DI Jing, ZHENG Hua-Jun. Preparation and Photocatalytic Properties of Fe2O3/TiO2 Nanotube Arrays[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 133-139. doi: 10.11862/CJIC.2015.037 shu

Preparation and Photocatalytic Properties of Fe2O3/TiO2 Nanotube Arrays

  • Corresponding author: ZHENG Hua-Jun, 
  • Received Date: 31 July 2014
    Available Online: 20 October 2014

    Fund Project: 浙江省科技计划(No.2009R50002-20)资助项目. (No.2009R50002-20)

  • TiO2 nanotube array was prepared by anodic oxidation method on the titanium substrate, and Fe2O3 nanoparticles was successfully deposited on TiO2 nanotube array by a chemical bath method. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectroscopy was applied to characterize their properties and the photoelectrochemical properties and the performance of photocatalytic degradation of methylene blue was investigated. The results indicated that the Fe2O3 modification not only broadened the absorption spectrum of TiO2 nanotube arrays to the visible light region, but also increased the photocurrent. The photocurrent response of Fe2O3 modified TiO2 nanotube arrays was 9 times higher than undecorated TiO2 nanotube arrays. In the photocatalytic reaction, the highest methylene blue degradation rate can reach 80%, which was 30% higher than the bare TiO2 nanotube arrays.
  • 加载中
    1. [1]

      [1] Fujishima A, Honda K. Nature, 1972,238(5358):37-38

    2. [2]

      [2] Gong D, Grimes C A, Varghese O K, et al. J. Mater. Res., 2001,16(12):3331-3334

    3. [3]

      [3] Varghese O K, Gong D, Paulose M, et al. Adv. Mater., 2003, 15(7-8):624-627

    4. [4]

      [4] Peng X, Cao G Z, Zhou M, et al. Electrochim. Acta, 2012, 76:512-517

    5. [5]

      [5] Mor G K, Shankar K, Paulose M, et al. Nano Lett., 2005,5 (1):191-195

    6. [6]

      [6] Gong J Y, Pu W H, Yang C Z, et al. Catal. Commun., 2013, 36:89-93

    7. [7]

      [7] Albu S P, Ghicov A, Macak J M, et al. Nano Lett., 2007,7 (5):1286-1289

    8. [8]

      [8] Niraula M, Adhikari S, Lee D Y, et al. Chem. Phys. Lett., 2014,593:193-197

    9. [9]

      [9] Gao X F, Sun W T, Hu Z D, et al. J. Phys. Chem. C, 2009, 113(47):20481-20485

    10. [10]

      [10] Yodyingyong S, Zhou X Y, Zhang Q F, et al. J. Phys. Chem. C, 2010,114(49):21851-21855

    11. [11]

      [11] Yip C T, Guo M, Huang H T, et al. Nanoscale, 2012,4(2): 448-450

    12. [12]

      [12] Xiong F Q, Wei X M, Li C, et al. J. Mater. Chem. A, 2014, 2(13):4510-4513

    13. [13]

      [13] Ong K G, Varghese O K, Mor G K, et al. Sol. Energ Mater. Sol. Cells, 2007,91(4):250-257

    14. [14]

      [14] Yu J G, Wang B. Appl. Catal. B: Environ., 2010,94(3/4):295 -302

    15. [15]

      [15] Xie K P, Sun L, Wang C L, et al. Electrochim. Acta, 2010, 55(24):7211-7218

    16. [16]

      [16] Shankar K, Bandara J, Paulose M, et al. Nano Lett., 2008,8 (6):1654-1659

    17. [17]

      [17] Kay A, Cesar I, Gratzel M. J. Am. Chem. Soc., 2006,128(49): 15714-15721

    18. [18]

      [18] Han W Q, Wen W, Yi D, et al. J. Phys. Chem. C, 2007,111 (39):14339-14342

    19. [19]

      [19] Beranek R, Macak J M, Gartner M, et al. Electrochim. Acta, 2009,54(9):2640-2646

    20. [20]

      [20] Tahir A A, Wijayantha K G U, Yarahmadi S S, et al. Chem. Mater., 2009,21(16):3763-3772

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    3. [3]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    8. [8]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    9. [9]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    10. [10]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    11. [11]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    12. [12]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    13. [13]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    14. [14]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    15. [15]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    16. [16]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    17. [17]

      Haoran Zhang Yaxin Jin Peng Kang Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099

    18. [18]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    19. [19]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    20. [20]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

Metrics
  • PDF Downloads(0)
  • Abstract views(568)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return