Citation: ZHAO Xin-Hong, WEN Juan-Juan, CHEN Jing, ZHAO Jiang-Bo, QI Yong-Dong, LI Gui-Xian. Ionothermal Synthesis of Hierarchical Structured CuAPO-5 Molecular Sieve[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 29-36. doi: 10.11862/CJIC.2015.003 shu

Ionothermal Synthesis of Hierarchical Structured CuAPO-5 Molecular Sieve

  • Corresponding author: ZHAO Xin-Hong, 
  • Received Date: 12 May 2014
    Available Online: 6 October 2014

    Fund Project: 国家自然科学基金(No.21306072) (No.21306072)红柳青年(No.201113)资助项目 (No.201113)

  • Hierarchical structured CuAPO-5 molecular sieve has been ionothermally synthesized by microwave irradiation and using eutectic mixture based on succinic acid, choline chloride and tetraethyl ammonium bromide as solvent and template. The effects of the ratio of P2O5/Al2O3, HF/Al2O3 and CuO/Al2O3, aluminum and copper sources on the crystallization of CuAPO-5 were systematically investigated. The resulting CuAPO-5 molecular sieve was characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscopy (TEM), and N2 physical adsorption-desorption, respectively. SEM analysis reveals that CuAPO-5 molecular sieve with hexagonal nanometer-disc morphology can be synthesized under specific synthesis conditions. N2 physisorption, SEM and TEM characterizations show that the resultant material is one kind of hierarchical structured aluminophosphate molecular sieve possesses both micropore and mesopore.
  • 加载中
    1. [1]

      [1] XU Ru-Ren(徐如人), PANG Wen-Qin(庞文琴), YU Ji-Hong (于吉红), et al. Chemistry-Zeolites and Porous Materials(分 子筛与多孔材料化学). Beijing: Science Press, 2004:15-19

    2. [2]

      [2] Chen L H, Tang Y, Xiao F S, et al. J. Mater. Chem., 2012, 22:17381-17403

    3. [3]

      [3] Hua Z L, Zhou J, Shi J L. Chem. Commun., 2011,47(38): 10536-10547

    4. [4]

      [4] Naydenov V, Tosheva L, Antzutkin O N, et al. Microporous Mesoporous Mater., 2005,78(2/3):181-188

    5. [5]

      [5] Egeblad K, Kustova M, Klitgaard S K, et al. Microporous Mesoporous Mater., 2007,101(1/2):214-223

    6. [6]

      [6] Yang X M, Lu T L, Chen C, et al. Microporous Mesoporous Mater., 2011,144(1/2/3):176-182

    7. [7]

      [7] Choi M, Srivastava R, Ryoo R. Chem. Commun., 2006(42): 4380-4382

    8. [8]

      [8] Kim J, Bhattacharjee S, Ahn W S, et al. New J. Chem., 2010,34(12):2971-2978

    9. [9]

      [9] Danilina N, Krumeich F, van Bokhoven J A. J. Catal., 2010, 272(1):37-43

    10. [10]

      [10] Fan Y, Xiao H, Shi G, et al. J. Catal., 2012,285(1):251-259

    11. [11]

      [11] Alicia M S, Manuel S S, Pedro M G, et al. Microporous Mesoporous Mater., 2010,131(1/2/3):331-341

    12. [12]

      [12] Kanchana U, Sujitra W. Microporous Mesoporous Mater., 2010,135(1/2/3):116-123

    13. [13]

      [13] Zhao X H, Chen J, Sun Z P, et al. Microporous Mesoporous Mater., 2013,182:8-15

    14. [14]

      [14] Dang T T H, Zubowa H L, Bentrup U, et al. Microporous Mesoporous Mater., 2009,123:209-220

    15. [15]

      [15] HE Ye(何月), DONG Mei(董梅), Li Jun-Fen(李俊汾), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2010,26(5):1305-1310

    16. [16]

      [16] Wan Y, Williams C D, Duke C V A, et al. J. Mater. Chem., 2000,10:2857-2862

    17. [17]

      [17] Zhao X H, Wang H, Li G X, et al. Microporous Mesoporous Mater., 2012,151:56-63

    18. [18]

      [18] Wragg D S, Slawin A M Z, Morris R E. Solid State Sci., 2009, 11(2):411-416

    19. [19]

      [19] Oliver S, Kuperman A, Ozin G A. Angew. Chem., Int. Ed. Engl., 1998,37(1/2):46-62

    20. [20]

      [20] Hentit H, Bachari K, Ouali M S, et al. J. Mol. Catal. A: Chem., 2007,275(1/2):158-166

    21. [21]

      [21] Tian D Y, Yan W F, Cao X J, et al. Chem. Mater., 2008,20: 2160-2164

    22. [22]

      [22] Tian D Y, Yan W F, Wang Z X, et al. Cryst. Growth Des., 2009,9(3):1411-1414

    23. [23]

      [23] Danilina N, Castelanelli S A, Troussard E, et al. Catal. Today, 2011,168(1):80-85

    24. [24]

      [24] Murthy K, Kulkarni S J, Masthan S K. Microporous Mesoporous Mater., 2001,43(2):201-209

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    4. [4]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    12. [12]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    13. [13]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    14. [14]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(0)
  • Abstract views(660)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return