Citation:
CHEN Qi, FEI Xia, HE Qin-Qin, LÜ Meng-Meng, WU Qi-Liang, LIU Xue-Ting, HE Bing. Preparation and Photocatalytic Properties of MIL-101/P25 Composites[J]. Chinese Journal of Inorganic Chemistry,
;2014, 30(5): 993-1000.
doi:
10.11862/CJIC.2014.175
-
Via hydrothermal method, MIL-101 was loaded on to the pretreated P25 to obtain MIL-101/P25 composites that were structurally characterized using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption (BET), thermogravimetry (TG), field emission transmission electron microscopy (FETEM) and photoluminescence (PL), meanwhile, the stability of MIL-101 and the composites was investigated, and the synergistic effect induced by compounding was quantitatively evaluated by the proposed synergistic factor. The results show that MIL-101 has sheet-like morphology, and a portion of it combined with P25. After compounding, the stability of MIL-101 is promoted. Compounding can bring the synergistic effect at the appropriate ratio, and when the molar ratio of Cr(NO3)3·9H2O to P25 is 1:1, the composite exhibits the highest activity for the visible light photocatalytic degradation of rhodamine B, and the synergistic factor is 1.64. The composite also exhibits high photocatalytic activity for the degradation of colorless organic pollutant salicylic acid.
-
-
-
[1]
[1] WU Jun-Min(吴俊明), WANG Ya-Ping(王亚平), YANG Han-Pei(杨汉培), et al. Chinese J. Inorg. Chem. (无机化学 学报), 2010, 26(2):203-210
-
[2]
[2] LIU Su-Qin(刘素芹), DAI Gao-Peng(戴高鹏), LIANG Ying (梁英), et al. Acta Phys.-Chim. Sin. (物理化学学报), 2013, 29(3):585-589
-
[3]
[3] Bux H, Liang F Y, Li Y S, et al. J. Am. Chem. Soc., 2009, 131(44):16000-16001
-
[4]
[4] Du J J, Yuan Y P, Sun J X, et al. J. Hazard. Mater., 2011, 190(1/2/3):945-951
-
[5]
[5] Yu H, Takashi T, Masakazu S, et al. J. Phys. Chem. C, 2012, 116(39):20848-20853
-
[6]
[6] Vallet-Regi M, Balas F, Arcos D. Angew. Chem. Int. Ed., 2007, 46(40):7548-7558
-
[7]
[7] Wu F, Qiu L G, Ke F, et al. Inorg. Chem. Commun., 2013, 32:5-8
-
[8]
[8] Murray L J, Dinc M, Long J R. Chem. Soc. Rev., 2009, 38(5): 1294-1314
-
[9]
[9] Hong D Y, Hwang Y K, Serre C, et al. Adv. Funct. Mater., 2009, 19(10):1537-1552
-
[10]
[10] Vallet-Regi M, Balas F, Arcos D. Angew. Chem. Int. Ed., 2007, 46(40):7548-7558
-
[11]
[11] Tsuruoka T, Kawasaki H, Nawafune H, et al. ACS Appl. Mater. Inter., 2011, 3(10):3788-3791
-
[12]
[12] Sun Z G, Li G, Liu L P, et al. Catal. Comm., 2012, 27:200-205
-
[13]
[13] Xiang Z, Peng X, Cheng X, et al. J. Phys. Chem. C, 2011, 115(40):19864-19871
-
[14]
[14] Lim D W, Yoon J W, Ryu K Y, et al. Angew. Chem. Int. Ed., 2012, 51(39):9814-9817
-
[15]
[15] Zhou G M, Wang D W, Yin L C, et al. ACS Nano, 2012, 6 (4):3214-3223
-
[16]
[16] Zhong R Q, Zou R Q, Nakagawa T, et al. Inorg. Chem., 2012, 51(5):2728-2730
-
[17]
[17] Glover T G, Sabo D, Vaughan L A, et al. Langmuir, 2012, 28(13):5695-5702
-
[18]
[18] Ferey G, Mellot-Draznieks C, Serre C, et al. Science, 2005, 309:2040-2042
-
[19]
[19] Prasanth K P, Rallapalli P, Raj M C, et al. Int. J. Hydrogen Energ., 2011, 36(13):7594-7601
-
[20]
[20] Chen C, Zhang M, Guan Q X, et al. Chem. Eng. J., 2012, 183:60-67
-
[21]
[21] Butler M A. J. Appl. Phys., 1977, 48:1914-1920
-
[22]
[22] Chen X B, Liu L, Yu P Y, et al. Science, 2011, 331:746-749
-
[23]
[23] Wu T X, Liu G M, Zhao J C. J. Phys. Chem. B, 1998, 102 (30):5845-5851
-
[1]
-
-
-
[1]
Huihui LIU , Baichuan ZHAO , Chuanhui WANG , Zhi WANG , Congyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059
-
[2]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[3]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[4]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[5]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[6]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[7]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[8]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[9]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[10]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[11]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[12]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[13]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[14]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[15]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[16]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[17]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[18]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[19]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[20]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(498)
- HTML views(132)