Citation: HAN Feng, MA Wei-Min, MA Lei, SUN Yang, SHI Shu-Jun, LI Xiao-Long, GUAN Ren-Guo. Effect of the NSC and RSC Co-precipitation Methods on Apparent Activation Energy of Pr2Zr2O7 Nanopowders[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 811-820. doi: 10.11862/CJIC.2014.089 shu

Effect of the NSC and RSC Co-precipitation Methods on Apparent Activation Energy of Pr2Zr2O7 Nanopowders

  • Corresponding author: MA Wei-Min, 
  • Received Date: 30 August 2013
    Available Online: 31 October 2013

    Fund Project: 沈阳市先进陶瓷制备技术及应用重点实验室建设项目(No:F12-259-1-00)资助项目。 (No:F12-259-1-00)

  • The Pr2Zr2O7 nanoparticles were prepared by using NSC and RSC co-precipitation method with ammonia as precipitant agent. XRD, SEM, TEM and TG-DTA were applied to analysis the crystallization and morphology of the samples. Synthesis kinetics of the preparation process and dynamics of grain growth were studied, and the apparent activation energy was calculated respectively by using Doyle-Ozawa method and the Kissinger method. The results show that the samples topography near spherical, there are no agglomeration and the mean particle size is about 60nm. They were obtained under the conditions of titration rate, 2 mL·min-1, initial concentration of resolution, 0.05 mol·L-1, system temperature 273K and calcination at 1173 K for 2 h by RSC. The average apparent activation energy of the particles, obtained by NSC, were 71.2, 97.8 and 183.2 kJ·mol-1 in each stage and the RSCs were 45.37, 84.34 and 152.16 kJ·mol-1; the grain growth activation energy of them were 19.02 and 11.95 kJ·mol-1 respectively, the latter decreases 7.07 kJ·mol-1 than the former. Reverse co-precipitation preparation technology is better than that of positive co-precipitation method.
  • 加载中
    1. [1]

      [1] XIANG Jian-Ying(项建英), CHEN Shu-Hai(陈树海), HUANG Ji-Hua(黄继华), et al. Acta Metall Sin.(金属学报), 2012, 48(8): 965-970

    2. [2]

      [2] GONG Wen-Biao(宫文彪), LI Yu-Peng(李于朋), LIU Wei (刘威) et al. J. Inorg. Mater. (无机材料学报), 2010, 25(8): 860-864

    3. [3]

      [3] ZHANG Hong-Song(张红松), HU Ren-Xi(胡仁喜), XU Qiang(徐强), et al. Rare Met. Mater. Eng. (稀有金属材料 与工程), 2009, 38(2):735-738

    4. [4]

      [4] ZHU Zheng-Quan(朱正权), HUANG Yong-Zhang(黄永章), LI Xing-Yan(李兴彦). Metall. Funct. Mater. (金属工程材 料), 2011, 18(2):79-82

    5. [5]

      [5] Doménech A, Montoya N, Alarcón J. J. Solid State Electrochem. 2012, 16:963-975

    6. [6]

      [6] GAO Shuai(郜帅). Thesis for the Doctorate of Harbin Institute of Technology(哈尔滨工业大学硕士论文), 2010.

    7. [7]

      [7] Kharton V V, Naumovich E N, Vecher A A. J. Solid State Electrochem., 1999, 3:61-81

    8. [8]

      [8] LIU Zhan-Guo(刘占国). Thesis for the Doctorate of Harbin Institute of Technology(哈尔滨工业大学博士论文), 2009.

    9. [9]

      [9] LU Xi-Rui(卢喜瑞), DONG Fa-Qin(董发勤), HU Song (胡淞), et al. Acta Phys. Sin. (物理学报), 2012, 61(15)1-8

    10. [10]

      [10] LI Quan(李权), MA Wei-Min(马伟民), MA Lei(马雷), et al. J. Synth. Cryst. (人工晶体学报), 2013, 42(1): 2-77

    11. [11]

      [11] Dhas N A, Patil K C. J. Mater. Chem., 1993, 3(12):1289-1294

    12. [12]

      [12] Matsuhira K, Sekine C, Paulsen C, et al. J. Physics: Conf. Series 145(2009) 012031

    13. [13]

      [13] LU Jing(卢靖), HUANG Jian-Feng(黄剑锋), CAO Li-Yun (曹丽云), et al. Chinese J. Inorg. Chem. (无机化学学报), 2013, 29(1):69-74

    14. [14]

      [14] Otero T F, Martinez J G. J. Solid State Electrochem. 2011, 15:1169-1178

    15. [15]

      [15] SI Wei (司伟), GAO Hong(高宏), WANG Jing(王晶), et al. Chinese J. Inorg. Chem. (无机化学学报), 2010, 26(8), :1443-1449

    16. [16]

      [16] XIAO Jin(肖劲), DENG Song-Yun(邓松云), WU Sheng-Hui (吴胜辉), et al. Chinese J. Inorg. Chem. (无机化学学报), 2010, 26(3):464-468

    17. [17]

      [17] GUO Yi-Fen(郭易芬), MA Wei-Min(马伟民), WEN Lei (闻雷), et al. Chinese J. Inorg. Chem. (无机化学学报), 2009, 25(5):880-885

    18. [18]

      [18] LI Yu-Ling(李玉玲), MA Wei-Min(马伟民), WEN Lei (闻雷), et al. Acta Metall Sin.(金属学报), 2011, 47(1):95-101

    19. [19]

      [19] Ji Y M, Jiang D Y, Shi J L. Mater. Lett., 2005, 59:868-871

    20. [20]

      [20] Ji Y M, Jiang D Y, Shi J L. Mater. Res. Bull., 2005, 40:553 -559

    21. [21]

      [21] RUAN Yan-Li(阮艳莉), TANG Zhi-Yuan(唐致远). Acta Phys. -Chim. Sin. (物理化学学报), 2008, 24(5):873-879

    22. [22]

      [22] ZHU Hong-Yan(朱红艳), MA Wei-Min(马伟民), WEN Lei (闻雷), et al. Acta Metall Sin.(金属学报), 2012, 48(6):671-677

    23. [23]

      [23] TIAN Yan-Wen(田彦文), GAO Hong(高虹), ZHAI Yu-Chun (翟玉春), et al. J. Inorg. Mater. (无机材料学报), 2000, 15 (6):1050-1054

    24. [24]

      [24] ZHOU Hong(周红), ZENG Wen-Ming(曾文明), CHEN Qi-Yuan(陈启元). Chin. J. Nonferrous. Met. (中国有色金属学 报), 1993, 3(2):40-43

    25. [25]

      [25] Guo X, Zhang Z L. Acta Mater., 2003, 51:2539-2547

  • 加载中
    1. [1]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    4. [4]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    8. [8]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    16. [16]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    17. [17]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    18. [18]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    19. [19]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    20. [20]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

Metrics
  • PDF Downloads(0)
  • Abstract views(1003)
  • HTML views(221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return