Citation: LIU Cui-Lian, TANG Rui-Kang*. Calcium Phosphate Nanoparticles in Bone and Biomaterials[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(1): 1-9. doi: 10.11862/CJIC.2014.072 shu

Calcium Phosphate Nanoparticles in Bone and Biomaterials

  • Received Date: 24 September 2013
    Available Online: 28 October 2013

    Fund Project:

  • Calcium phosphate nanoparticles play a key role in the formation of bone in nature. Although there is significant variation between different types of bone, inorganic components in the primary structure of bone are nano calcium phosphates. Nano-calcium phosphates can confer on bone remarkable mechanical property and bioactivity. In living organisms, inorganic nano calcium phosphate particles, under the control of an organic matrix, can combine into self-assembled biominerals. The in vitro experiments have demonstrated the improved biocompatibility of calcium phosphates in their nano forms. Greater cell proliferation of bone marrow mesenchymal stem cells (MSCs) is frequently induced by smaller hydroxyapatite (HAP) nanoparticles. HAP improved a better differentiation for MSCs than the amorphous one, ACP, when they are in the same size distribution. Due to its excellent biocompatibility, it is suggest that nano-HAP may be developed as an ideal biomaterial in bone tissue engineering and biomedicine.
  • 加载中
    1. [1]

      [1] Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. New York: Oxford University Press, 2001:6

    2. [2]

      [2] Olszta M J, Cheng X, Jee S S, et al. Mater. Sci. Eng., 2007, 58(3):77-116

    3. [3]

      [3] CUI Fu-Zhai(崔福斋). Biomineralization(生物矿化). Beijing: Tsinghua University Press, 2007:17

    4. [4]

      [4] Cai Y, Tang R. J. Mater. Chem., 2008, 18(32):3775-3787

    5. [5]

      [5] Currey J D. Science, 2005, 309(5732):253-254

    6. [6]

      [6] Fincham A, Moradian-Oldak J, Simmer J. J. Struct. Boil., 1999, 126(3):270-299

    7. [7]

      [7] Zhou H, Lee J. Acta Biomater., 2011, 7(7):2769-2781

    8. [8]

      [8] Wei G, Ma P X. Biomaterials, 2004, 25(19):4749-4757

    9. [9]

      [9] Malmberg P, Nygren H. Proteomics, 2008, 8(18):3755-3762

    10. [10]

      [10] Mrten A, Fratzl P, Paris O, et al. Biomaterials, 2010, 31(20): 5479-5490

    11. [11]

      [11] Batchelar D L, Davidson M T, Dabrowski W, et al. Med. Phys., 2006, 33(4):904-916

    12. [12]

      [12] Sadat-Shojai M, Khorasani M T, Dinpanah-Khoshdargi E, et al. Acta Biomater., 2013, 9(8):7591-7621

    13. [13]

      [13] Kalita S J, Bhardwaj A, Bhatt H A. Mater. Sci. Eng. C, 2007, 27(3):441-449

    14. [14]

      [14] Traub W, Arad T, Weiner S. Proc. Natl. Acad. Sci. U S A, 1989, 86(24):9822-9826

    15. [15]

      [15] Ji B, Gao H. Annu. Rev. Mater. Res., 2010, 40:77-100

    16. [16]

      [16] Lowenstam H A, Weiner S. On biomineralization, Oxford University Press, 1989.

    17. [17]

      [17] Wang L, Nancollas G H, Henneman Z J, et al. Biointerphases, 2006, 1(3):106-111

    18. [18]

      [18] Fratzl P, Gupta H, Paschalis E, et al. J. Mater. Chem., 2004, 14(14):2115-2123

    19. [19]

      [19] Ji B, Gao H. J. Mech. Phys. Solids, 2004, 52(9):1963-1990

    20. [20]

      [20] Gao H, Ji B, Jger I L, et al. Proc. Natl. Acad. Sci. U S A, 2003, 100(10):5597-5600

    21. [21]

      [21] Landis W J, Paine M C, Glimcher M J. J. Ultrastruc. Res., 1977, 59(1):1-30

    22. [22]

      [22] Gupta H S, Seto J, Wagermaier W, et al. Proc. Natl. Acad. Sci. U S A, 2006, 103(47):17741-17746

    23. [23]

      [23] Raisz L G, Kream B E. Annu. Rev. Physiol., 1981, 43(1): 225-238

    24. [24]

      [24] Raisz L G. Clin. Chem., 1999, 45(8):1353-1358

    25. [25]

      [25] Váábánen K. Adv. Drug Delivery Rev., 2005, 57(7):959-971

    26. [26]

      [26] Vallet-Regí M, González-Calbet J M. Prog. Solid State Chem., 2004, 32(1):1-31

    27. [27]

      [27] Okada M, Furuzono T. Sci. Technol. Adv. Mater., 2012, 13 (6):064103

    28. [28]

      [28] Yeong K, Wang J, Ng S. Biomaterials, 2001, 22(20):2705-2712

    29. [29]

      [29] Tas A C. J. Eur. Ceram. Soc., 2000, 20(14):2389-2394

    30. [30]

      [30] Suchanek W L, Shuk P, Byrappa K, et al. Biomaterials, 2002, 23(3):699-710

    31. [31]

      [31] Bezzi G, Celotti G, Landi E, et al. Mater. Chem. Phys., 2003, 78(3):816-824

    32. [32]

      [32] Sadat-Shojai M, Atai M, Nodehi A. J. Brazilian Chem. Soc., 2011, 22(3):571-582

    33. [33]

      [33] Ito H, Oaki Y, Imai H. Cryst. Growth Des., 2008, 8(3):1055-1059

    34. [34]

      [34] Hassenkam T, Fantner G E, Cutroni J A, et al. Bone, 2004, 35(1):4-10

    35. [35]

      [35] Wang X, Zhuang J, Peng Q, et al. Nature, 2005, 437(7055): 121-124

    36. [36]

      [36] Ingert D, Pileni M P. Adv. Funct. Mater., 2001, 11(2):136-139

    37. [37]

      [37] Zhang B, Li G, Zhang J, et al. Nanotechnology, 2003, 14(4): 443

    38. [38]

      [38] Zhang B, Davis S A, Mann S. Chem. Mater., 2002, 14(3): 1369-1375

    39. [39]

      [39] Douglas T, Young M. Nature, 1998, 393(6681):152-155

    40. [40]

      [40] Shenton W, Douglas T, Young M, et al. Adv. Mater., 1999, 11(3):253-256

    41. [41]

      [41] Bose S, Saha S K. Chem. Mater., 2003, 15(23):4464-4469

    42. [42]

      [42] Sun Y, Guo G, Tao D, et al. J. Phys. Chem. Solids, 2007, 68(3):373-377

    43. [43]

      [43] Shenton W, Pum D, Sleytr U B, et al. Nature, 1997, 389 (6651):585-587

    44. [44]

      [44] Carpick R W, Salmeron M. Chem. Rev., 1997, 97(4):1163-1194

    45. [45]

      [45] Cai Y, Liu Y, Yan W, et al. J. Mater. Chem., 2007, 17(36): 3780-3787

    46. [46]

      [46] Fowler C E, Li M, Mann S, et al. J. Mater. Chem., 2005, 15 (32):3317-3325

    47. [47]

      [47] Penn R L, Banfield J F. Am. Mineral, 1998, 83(9/10):1077-1082

    48. [48]

      [48] Niederberger M, Clfen H. Phys. Chem. Chem. Phys., 2006, 8(28):3271-3287

    49. [49]

      [49] Tao J, Zhou D, Zhang Z, et al. Proc. Natl. Acad. Sci. U S A, 2009, 106(52):22096-22101

    50. [50]

      [50] Tao J, Pan H, Zeng Y, et al. J. Phys. Chem. B, 2007, 111 (47):13410-13418

    51. [51]

      [51] Weiner S, Traub W, Wagner H D. J. Struct. Biol., 1999, 126(3):241-255

    52. [52]

      [52] Yuasa T, Miyamoto Y, Ishikawa K, et al. Biomaterials, 2004, 25(7):1159-1166

    53. [53]

      [53] Shu R, McMullen R, Baumann M, et al. J. Biomed. Mater. Res. A, 2003, 67(4):1196-1204

    54. [54]

      [54] Balasundaram G, Sato M, Webster T J. Biomaterials, 2006, 27(14):2798-2805

    55. [55]

      [55] Hu Q, Tan Z, Liu Y, et al. J. Mater. Chem., 2007, 17(44): 4690-4698

    56. [56]

      [56] Webster T J, Ergun C, Doremus R H, et al. Biomaterials, 2000, 21(17):1803-1810

    57. [57]

      [57] Liu X, Smith L A, Hu J, et al. Biomaterials, 2009, 30(12): 2252-2258

    58. [58]

      [58] Rezwan K, Chen Q, Blaker J, et al. Biomaterials, 2006, 27 (18):3413-3431

    59. [59]

      [59] Robinson C, Connell S, Kirkham J, et al. J. Mater. Chem., 2004, 14(14):2242-2248

    60. [60]

      [60] Li L, Pan H, Tao J, et al. J. Mater. Chem., 2008, 18(34): 4079-4084

    61. [61]

      [61] Bernardi G. Coll. Intern. CNRS, 1975, 230:463-465

    62. [62]

      [62] Luo Y, Ling Y, Guo W, et al. J. Controlled Release, 2010, 147(2):278-288

    63. [63]

      [63] Uskokovi V, Uskokovi D P. J Biomed. Mater. Res. B: Appl. Biomater., 2011, 96(1):152-191

    64. [64]

      [64] Cai Y, Pan H, Xu X, et al. Chem. Mater., 2007, 19(13): 3081-3083

    65. [65]

      [65] Yang P, Quan Z, Li C, et al. Biomaterials, 2008, 29(32): 4341-4347

    66. [66]

      [66] Chen W, Xiao Y, Liu X, et al. Chem. Commun., 2013, 49: 4932-4934

    67. [67]

      [67] Chen C, Okayama H. Biotechnique, 1987, 6(7):632-638

    68. [68]

      [68] Dorozhkin S V. Biomaterials, 2010, 31(7):1465-1485

    69. [69]

      [69] Zhu S, Huang B, Zhou K, et al. J. Nanopart. Res., 2004, 6 (2):307-311

    70. [70]

      [70] Hossain S, Stanislaus A, Chua M J, et al. J. Controlled Release, 2010, 147(1):101-108

    71. [71]

      [71] Wang B, Liu P, Jiang W, et al. Angew. Chem. Int. Ed., 2008, 47(19):3560-3564

    72. [72]

      [72] Wang G, Li X, Mo L, et al. Angew. Chem. Int. Ed., 2012, 124(42), 10728-10731

    73. [73]

      [73] Wang W, Itoh S, Tanaka Y, et al. Acta Biomater., 2009, 5 (8):3132-3140

    74. [74]

      [74] Itoh S, Nakamura S, Nakamura M, et al. Biomaterials, 2006, 27(32):5572-5579

    75. [75]

      [75] Kumar D, Gittings J, Turner I, et al. Acta Biomater., 2010, 6(4):1549-1554

    76. [76]

      [76] Tran N, Webster T J. J. Mater. Chem., 2010, 20(40):8760-8767

    77. [77]

      [77] Tran N, Webster T J. Acta Biomater., 2011, 7(3):1298-1306

    78. [78]

      [78] Hou C H, Hou S M, Hsueh Y S, et al. Biomaterials, 2009, 30(23):3956-3960

    79. [79]

      [79] Wu H C, Wang T W, Bohn M C, et al. Adv. Funct. Mater., 2010, 20(1):67-77

    80. [80]

      [80] Rauschmann M A, Wichelhaus T A, Stirnal V, et al. Biomaterials, 2005, 26(15):2677-2684

    81. [81]

      [81] Chen W, Liu Y, Courtney H, et al. Biomaterials, 2006, 27 (32):5512-5517

    82. [82]

      [82] Rameshbabu N, Kumar N S, Prabhakar T, et al. J. Biomed. Mater. Res. A, 2007, 80(3):581-591

    83. [83]

      [83] Zhang M, Liu J K, Miao R, et al. Nanoscale Res. Lett., 2010, 5(4):675-679

    84. [84]

      [84] Li L, Liu Y, Tao J, et al. J. Phys. Chem. C, 2008, 112(32): 12219-12224

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    5. [5]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    6. [6]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    7. [7]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    8. [8]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    9. [9]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    10. [10]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    11. [11]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    12. [12]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    15. [15]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    17. [17]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    18. [18]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    19. [19]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    20. [20]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

Metrics
  • PDF Downloads(517)
  • Abstract views(966)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return