Citation:
LIU Cui-Lian, TANG Rui-Kang*. Calcium Phosphate Nanoparticles in Bone and Biomaterials[J]. Chinese Journal of Inorganic Chemistry,
;2014, 30(1): 1-9.
doi:
10.11862/CJIC.2014.072
-
Calcium phosphate nanoparticles play a key role in the formation of bone in nature. Although there is significant variation between different types of bone, inorganic components in the primary structure of bone are nano calcium phosphates. Nano-calcium phosphates can confer on bone remarkable mechanical property and bioactivity. In living organisms, inorganic nano calcium phosphate particles, under the control of an organic matrix, can combine into self-assembled biominerals. The in vitro experiments have demonstrated the improved biocompatibility of calcium phosphates in their nano forms. Greater cell proliferation of bone marrow mesenchymal stem cells (MSCs) is frequently induced by smaller hydroxyapatite (HAP) nanoparticles. HAP improved a better differentiation for MSCs than the amorphous one, ACP, when they are in the same size distribution. Due to its excellent biocompatibility, it is suggest that nano-HAP may be developed as an ideal biomaterial in bone tissue engineering and biomedicine.
-
-
-
[1]
[1] Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. New York: Oxford University Press, 2001:6
-
[2]
[2] Olszta M J, Cheng X, Jee S S, et al. Mater. Sci. Eng., 2007, 58(3):77-116
-
[3]
[3] CUI Fu-Zhai(崔福斋). Biomineralization(生物矿化). Beijing: Tsinghua University Press, 2007:17
-
[4]
[4] Cai Y, Tang R. J. Mater. Chem., 2008, 18(32):3775-3787
-
[5]
[5] Currey J D. Science, 2005, 309(5732):253-254
-
[6]
[6] Fincham A, Moradian-Oldak J, Simmer J. J. Struct. Boil., 1999, 126(3):270-299
-
[7]
[7] Zhou H, Lee J. Acta Biomater., 2011, 7(7):2769-2781
-
[8]
[8] Wei G, Ma P X. Biomaterials, 2004, 25(19):4749-4757
-
[9]
[9] Malmberg P, Nygren H. Proteomics, 2008, 8(18):3755-3762
-
[10]
[10] Mrten A, Fratzl P, Paris O, et al. Biomaterials, 2010, 31(20): 5479-5490
-
[11]
[11] Batchelar D L, Davidson M T, Dabrowski W, et al. Med. Phys., 2006, 33(4):904-916
-
[12]
[12] Sadat-Shojai M, Khorasani M T, Dinpanah-Khoshdargi E, et al. Acta Biomater., 2013, 9(8):7591-7621
-
[13]
[13] Kalita S J, Bhardwaj A, Bhatt H A. Mater. Sci. Eng. C, 2007, 27(3):441-449
-
[14]
[14] Traub W, Arad T, Weiner S. Proc. Natl. Acad. Sci. U S A, 1989, 86(24):9822-9826
-
[15]
[15] Ji B, Gao H. Annu. Rev. Mater. Res., 2010, 40:77-100
-
[16]
[16] Lowenstam H A, Weiner S. On biomineralization, Oxford University Press, 1989.
-
[17]
[17] Wang L, Nancollas G H, Henneman Z J, et al. Biointerphases, 2006, 1(3):106-111
-
[18]
[18] Fratzl P, Gupta H, Paschalis E, et al. J. Mater. Chem., 2004, 14(14):2115-2123
-
[19]
[19] Ji B, Gao H. J. Mech. Phys. Solids, 2004, 52(9):1963-1990
-
[20]
[20] Gao H, Ji B, Jger I L, et al. Proc. Natl. Acad. Sci. U S A, 2003, 100(10):5597-5600
-
[21]
[21] Landis W J, Paine M C, Glimcher M J. J. Ultrastruc. Res., 1977, 59(1):1-30
-
[22]
[22] Gupta H S, Seto J, Wagermaier W, et al. Proc. Natl. Acad. Sci. U S A, 2006, 103(47):17741-17746
-
[23]
[23] Raisz L G, Kream B E. Annu. Rev. Physiol., 1981, 43(1): 225-238
-
[24]
[24] Raisz L G. Clin. Chem., 1999, 45(8):1353-1358
-
[25]
[25] Váábánen K. Adv. Drug Delivery Rev., 2005, 57(7):959-971
-
[26]
[26] Vallet-Regí M, González-Calbet J M. Prog. Solid State Chem., 2004, 32(1):1-31
-
[27]
[27] Okada M, Furuzono T. Sci. Technol. Adv. Mater., 2012, 13 (6):064103
-
[28]
[28] Yeong K, Wang J, Ng S. Biomaterials, 2001, 22(20):2705-2712
-
[29]
[29] Tas A C. J. Eur. Ceram. Soc., 2000, 20(14):2389-2394
-
[30]
[30] Suchanek W L, Shuk P, Byrappa K, et al. Biomaterials, 2002, 23(3):699-710
-
[31]
[31] Bezzi G, Celotti G, Landi E, et al. Mater. Chem. Phys., 2003, 78(3):816-824
-
[32]
[32] Sadat-Shojai M, Atai M, Nodehi A. J. Brazilian Chem. Soc., 2011, 22(3):571-582
-
[33]
[33] Ito H, Oaki Y, Imai H. Cryst. Growth Des., 2008, 8(3):1055-1059
-
[34]
[34] Hassenkam T, Fantner G E, Cutroni J A, et al. Bone, 2004, 35(1):4-10
-
[35]
[35] Wang X, Zhuang J, Peng Q, et al. Nature, 2005, 437(7055): 121-124
-
[36]
[36] Ingert D, Pileni M P. Adv. Funct. Mater., 2001, 11(2):136-139
-
[37]
[37] Zhang B, Li G, Zhang J, et al. Nanotechnology, 2003, 14(4): 443
-
[38]
[38] Zhang B, Davis S A, Mann S. Chem. Mater., 2002, 14(3): 1369-1375
-
[39]
[39] Douglas T, Young M. Nature, 1998, 393(6681):152-155
-
[40]
[40] Shenton W, Douglas T, Young M, et al. Adv. Mater., 1999, 11(3):253-256
-
[41]
[41] Bose S, Saha S K. Chem. Mater., 2003, 15(23):4464-4469
-
[42]
[42] Sun Y, Guo G, Tao D, et al. J. Phys. Chem. Solids, 2007, 68(3):373-377
-
[43]
[43] Shenton W, Pum D, Sleytr U B, et al. Nature, 1997, 389 (6651):585-587
-
[44]
[44] Carpick R W, Salmeron M. Chem. Rev., 1997, 97(4):1163-1194
-
[45]
[45] Cai Y, Liu Y, Yan W, et al. J. Mater. Chem., 2007, 17(36): 3780-3787
-
[46]
[46] Fowler C E, Li M, Mann S, et al. J. Mater. Chem., 2005, 15 (32):3317-3325
-
[47]
[47] Penn R L, Banfield J F. Am. Mineral, 1998, 83(9/10):1077-1082
-
[48]
[48] Niederberger M, Clfen H. Phys. Chem. Chem. Phys., 2006, 8(28):3271-3287
-
[49]
[49] Tao J, Zhou D, Zhang Z, et al. Proc. Natl. Acad. Sci. U S A, 2009, 106(52):22096-22101
-
[50]
[50] Tao J, Pan H, Zeng Y, et al. J. Phys. Chem. B, 2007, 111 (47):13410-13418
-
[51]
[51] Weiner S, Traub W, Wagner H D. J. Struct. Biol., 1999, 126(3):241-255
-
[52]
[52] Yuasa T, Miyamoto Y, Ishikawa K, et al. Biomaterials, 2004, 25(7):1159-1166
-
[53]
[53] Shu R, McMullen R, Baumann M, et al. J. Biomed. Mater. Res. A, 2003, 67(4):1196-1204
-
[54]
[54] Balasundaram G, Sato M, Webster T J. Biomaterials, 2006, 27(14):2798-2805
-
[55]
[55] Hu Q, Tan Z, Liu Y, et al. J. Mater. Chem., 2007, 17(44): 4690-4698
-
[56]
[56] Webster T J, Ergun C, Doremus R H, et al. Biomaterials, 2000, 21(17):1803-1810
-
[57]
[57] Liu X, Smith L A, Hu J, et al. Biomaterials, 2009, 30(12): 2252-2258
-
[58]
[58] Rezwan K, Chen Q, Blaker J, et al. Biomaterials, 2006, 27 (18):3413-3431
-
[59]
[59] Robinson C, Connell S, Kirkham J, et al. J. Mater. Chem., 2004, 14(14):2242-2248
-
[60]
[60] Li L, Pan H, Tao J, et al. J. Mater. Chem., 2008, 18(34): 4079-4084
-
[61]
[61] Bernardi G. Coll. Intern. CNRS, 1975, 230:463-465
-
[62]
[62] Luo Y, Ling Y, Guo W, et al. J. Controlled Release, 2010, 147(2):278-288
-
[63]
[63] Uskokovi V, Uskokovi D P. J Biomed. Mater. Res. B: Appl. Biomater., 2011, 96(1):152-191
-
[64]
[64] Cai Y, Pan H, Xu X, et al. Chem. Mater., 2007, 19(13): 3081-3083
-
[65]
[65] Yang P, Quan Z, Li C, et al. Biomaterials, 2008, 29(32): 4341-4347
-
[66]
[66] Chen W, Xiao Y, Liu X, et al. Chem. Commun., 2013, 49: 4932-4934
-
[67]
[67] Chen C, Okayama H. Biotechnique, 1987, 6(7):632-638
-
[68]
[68] Dorozhkin S V. Biomaterials, 2010, 31(7):1465-1485
-
[69]
[69] Zhu S, Huang B, Zhou K, et al. J. Nanopart. Res., 2004, 6 (2):307-311
-
[70]
[70] Hossain S, Stanislaus A, Chua M J, et al. J. Controlled Release, 2010, 147(1):101-108
-
[71]
[71] Wang B, Liu P, Jiang W, et al. Angew. Chem. Int. Ed., 2008, 47(19):3560-3564
-
[72]
[72] Wang G, Li X, Mo L, et al. Angew. Chem. Int. Ed., 2012, 124(42), 10728-10731
-
[73]
[73] Wang W, Itoh S, Tanaka Y, et al. Acta Biomater., 2009, 5 (8):3132-3140
-
[74]
[74] Itoh S, Nakamura S, Nakamura M, et al. Biomaterials, 2006, 27(32):5572-5579
-
[75]
[75] Kumar D, Gittings J, Turner I, et al. Acta Biomater., 2010, 6(4):1549-1554
-
[76]
[76] Tran N, Webster T J. J. Mater. Chem., 2010, 20(40):8760-8767
-
[77]
[77] Tran N, Webster T J. Acta Biomater., 2011, 7(3):1298-1306
-
[78]
[78] Hou C H, Hou S M, Hsueh Y S, et al. Biomaterials, 2009, 30(23):3956-3960
-
[79]
[79] Wu H C, Wang T W, Bohn M C, et al. Adv. Funct. Mater., 2010, 20(1):67-77
-
[80]
[80] Rauschmann M A, Wichelhaus T A, Stirnal V, et al. Biomaterials, 2005, 26(15):2677-2684
-
[81]
[81] Chen W, Liu Y, Courtney H, et al. Biomaterials, 2006, 27 (32):5512-5517
-
[82]
[82] Rameshbabu N, Kumar N S, Prabhakar T, et al. J. Biomed. Mater. Res. A, 2007, 80(3):581-591
-
[83]
[83] Zhang M, Liu J K, Miao R, et al. Nanoscale Res. Lett., 2010, 5(4):675-679
-
[84]
[84] Li L, Liu Y, Tao J, et al. J. Phys. Chem. C, 2008, 112(32): 12219-12224
-
[1]
-
-
-
[1]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[2]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[3]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[4]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[5]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[6]
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042
-
[7]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
-
[8]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[9]
Yao Ma , Xin Zhao , Hongxu Chen , Wei Wei , Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045
-
[10]
Cuicui Yang , Bo Shang , Xiaohua Chen , Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066
-
[11]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[12]
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
-
[13]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[14]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[15]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[16]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[17]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[18]
Zeyi Yan , Ruitao Liu , Xinyu Qi , Yuxiang Zhang , Lulu Sun , Xiangyuan Li , Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110
-
[19]
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
-
[20]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
-
[1]
Metrics
- PDF Downloads(517)
- Abstract views(966)
- HTML views(151)