Citation:
XIAO Chong, LI Zhou, XIE Yi*. Synergistic Optimization of Electrical and Thermal Transport Properties in Chalcogenides Thermoelectric Materials[J]. Chinese Journal of Inorganic Chemistry,
;2014, 30(1): 10-19.
doi:
10.11862/CJIC.2014.071
-
Over the past few years, thermoelectric materials have redrawn considerable attentions among physics, chemistry, and materials researchers due to their capability of direct conversion between heat and electricity, which is today well recognized as viable renewable-energy sources. However, it is still one of the biggest challenges hitherto to independently optimize these three parameters for obtaining high-performance thermoelectric materials with large ZT value. Chalcogenide semiconductors as the most important class of thermoelectric materials, the synergistic optimization of their electrical-thermal transport properties has attracted widespread attentions. Herein, we reviewed the latest development of the synergistic optimization in Chalcogenide semiconductors. We also analyzed the inherent physical mechanisms within the synergistic optimization. Finally, we summarized the prospects of these new strategies in thermoelectric materials development.
-
-
-
[1]
[1] Wise M, Calvin K, Thomson A, et al. Science, 2009, 324 (5931):1183-1186
-
[2]
[2] Wood C. Rep. Prog. Phys., 1988, 51(4):459-539
-
[3]
[3] Bell L E. Science, 2008, 321(5895):1457-1461
-
[4]
[4] Tritt T M. Annu. Rev. Mater. Res., 2011, 41:433-448
-
[5]
[5] Tritt T M, Subramanian M A. MRS Bull., 2006, 31(3):188-198
-
[6]
[6] Snyder G J, Toberer E S. Nat. Mater., 2008, 7(2):105-114
-
[7]
[7] Shakouri A. Annu. Rev. Mater. Res., 2011, 41:399-431
-
[8]
[8] Mahan G D, Bartkowiak M. Appl. Phys. Lett., 1999, 74(7): 953-954
-
[9]
[9] Rao C N R. Acc. Chem. Res., 1984, 17(3):83-89
-
[10]
[10] Imada M, Fujimori A, Tokura Y. Rev. Modern. Phys., 1998, 70(4):1039-1263
-
[11]
[11] Wu C Z, Feng F, Feng J, et al. J. Am. Chem. Soc., 2011, 133(35):13798-13801
-
[12]
[12] Kobayashi M. Solid State Ionics., 1990, 39(3-4):121-149
-
[13]
[13] Santhosh K M C, Pradeep B. Semicond. Sci. Technol., 2002, 17(3):261-265
-
[14]
[14] Wiegers G A. Am. Mineral., 1971, 56(11-12):1882-1888
-
[15]
[15] Billetter H, Ruschewitz U. Z. Anorg. Allg. Chem., 2008, 634 (2):241-246
-
[16]
[16] Xiao C, Xu J, Li K, et al. J. Am. Chem. Soc., 2012, 134(9): 4287-4293
-
[17]
[17] Xiao C, Qin, X M, Zhang J, et al. J. Am. Chem. Soc., 2012, 134(44):18460-18466
-
[18]
[18] Slack G A. CRC Handbook of Thermoelectric. Boca Raton: Chemical Rubber, 1995.
-
[19]
[19] Snyder G J, Christensen M, Nishibor E, et al. Nat. Mater., 2004, 3(7):458-463
-
[20]
[20] Xiao C, Xu J, Cao B X, et al. J. Am. Chem. Soc., 2012, 134 (18):7971-7977
-
[21]
[21] Goto Y, Naito F, Sato R. Inorg. Chem., 2013, 52(17):9861-9866
-
[22]
[22] Liu H L, Shi X, Xu F F, et al. Nat. Mater., 2012, 11(5):422-425
-
[23]
[23] Larson P, Mahanti S D, Kanatzidis M G. Phys. Rev. B, 2000, 61(12):8162-8171
-
[24]
[24] Youn S J, Freeman A J. Phys. Rev. B, 2000, 63(8):085112
-
[25]
[25] Sun Y F, Cheng H, Gao S, et al. J. Am. Chem. Soc., 2012, 134(50):20294-20297
-
[26]
[26] Hicks L D, Harman T C, Dresselhaus M S. Appl. Phys. Lett., 1993, 63(23):3230-3232
-
[27]
[27] Klemens P G. Proc. Phys. Soc. London Sec. A, 1955, 68(12): 1113-1128
-
[28]
[28] Carruthers P. Rev. Mod. Phys., 1961, 33(1):92-138
-
[29]
[29] Dismukes J P, Ekstrom L, Steigmeier E F, et al. J. Appl. Phys., 1964, 35(10):2899-2907
-
[30]
[30] Slack G A, Hussain M A. J. Appl. Phys., 1991, 70(5):2694-2718
-
[31]
[31] Cahill D G, Watanabe F, Rockett A, et al. Phys. Rev. B, 2005, 71(23):235202
-
[32]
[32] Yu C, Scullin M L, Huijben M, et al. Appl. Phys. Lett., 2008, 92(19):191911
-
[33]
[33] Vineis C J, Shakouri A, Majumdar A, et al. Adv. Mater., 2010, 22(36):3970-3980
-
[34]
[34] Rowe D M, Shukla V S, Savvides N, Nature, 1981, 290(5809): 765-766
-
[35]
[35] Vining C B, Laskow W, Hanson J O, et al. J. Appl. Phys., 1991, 69(8):4333-4340
-
[36]
[36] Chen G. Phys. Rev. B, 1998, 57(23):14958-14973
-
[37]
[37] Mi J L, Zhu T J, Zhao X B, et al. J. Appl. Phys., 2007, 101 (5):054314
-
[38]
[38] Bux S K, Blair R G, Gogna P K, et al. Adv. Funct. Mater., 2009, 19(12):2445-2452
-
[39]
[39] Biswas K, He J Q, Blum I D, et al. Nature, 2012, 489(7416): 414-418
-
[40]
[40] Disalvo F J. Science, 1999, 285(5428):703-706
-
[41]
[41] Goldsmid H J. Thermoelectric Refrigeration. New York: Plenum Press, 1964.
-
[42]
[42] Ravich Y I, Efimova B A, Smirnov I A. Semiconducting Lead Chalcogenides. New York: Plenum Press, 1970.
-
[43]
[43] Sitter H, Lischka K, Heinrich H. Phys. Rev. B, 1977, 16(2): 680-687
-
[44]
[44] Ravich Y I. In Lead Chalcogenides: Physics and Applica-tions: Ch.1. New York: Taylor & Fransics Group, 2003.
-
[45]
[45] Hoang K S, Mahanti D, Kanatzidis M G. Phys. Rev. B, 2010, 81(11):115106
-
[46]
[46] Pei Y Z, Shi X, LaLonde A, et al. Nature, 2011, 473(7345): 66-69
-
[47]
[47] Rhyee J S, Lee K H, Lee S M, et al. Nature, 2009, 459(7249): 965-968
-
[48]
[48] Rhyee J S, Ahn K, Lee K H, et al. Adv. Mater., 2011, 23 (19):2191-2194
-
[49]
[49] Zhu G H, Lan Y C, Wang H, et al. Phys. Rev. B, 2011, 83 (11):115201
-
[50]
[50] Kim J H, Rhyee J S, Kwon Y S. Phys. Rev. B, 2012, 86(23): 235101
-
[51]
[51] Ahn K, Cho E, Rhyee J S, et al. J. Mater. Chem., 2012, 22 (12):5730-5736
-
[52]
[52] Alivisatos A P. Science, 1996, 271(5251):933-937
-
[53]
[53] Dresselhaus M S, Chen G, Tang M Y, et al. Adv. Mater., 2007, 19(8):1043-1053
-
[54]
[54] Brus L E. J. Phys. Chem., 1986, 90(12):2555-2560
-
[55]
[55] Henglein A. Top. Curr. Chem., 1988, 143:113-119
-
[56]
[56] Steigerwald M L, Brus L E. Annu. Reu. Mater. Sci., 1989, 19:471-495
-
[57]
[57] Steigerwald M L, Brus L E. Acc. Chem. Res., 1990, 23(6): 183-188
-
[58]
[58] Halperin W P. Rev. Mod. Phys., 1986, 58(3):533-606
-
[59]
[59] Ball P, Garwin L. Nature, 1992, 355:761-766
-
[60]
[60] Goldstein A N, Echer C M, Alivisatos A P. Science, 1992, 256(5062):1425-1427
-
[61]
[61] Harman T C, Taylor P J, Walsh M P, et al. Science, 2002, 297(5590):2229-2232
-
[62]
[62] Ikeda T, Collins L A, Ravi V A, et al. Chem. Mater., 2007, 19(4):763-767
-
[63]
[63] Zhao Y, Dyck J S, Hernandez B M, et al. J. Am. Chem. Soc., 2010, 132(14):4982-4983
-
[64]
[64] Chen J, Zhang G, Li B W. Nano Lett., 2010, 10(10):3978-3983
-
[65]
[65] Scheele M, Oeschler N, Veremchuk I, et al. ACS Nano, 2010, 4(7):4283-4291
-
[66]
[66] Poudeu P F P, Güeguen A, Wu C I, et al. Chem. Mater., 2010, 22(3):1046-1053
-
[67]
[67] Zhang Y C, Wang H, Kraemer S, et al. ACS Nano, 2011, 5 (4):3158-3165
-
[68]
[68] Soni A, Zhao Y Y, Yu L G, et al. Nano Lett., 2012, 12(3): 1203-1209
-
[69]
[69] Soni A, Shen Y Q, Yin M, et al. Nano Lett., 2012, 12(8): 4305-4310
-
[70]
[70] Mehta R J, Zhang Y L, Karthik C, et al. Nat. Mater., 2012, 11(3):233-240
-
[71]
[71] Liu Y, Zhao L D, Liu Y C. J. Am. Chem. Soc., 2011, 133 (50):20112-20115
-
[72]
[72] Pei Y L, He J Q, Li J F. NPG Asia Mater., 2013, 5:e47
-
[73]
[73] Li F, Li J F, Zhao L D. Energy Environ. Sci., 2012, 5(5): 7188-7195
-
[74]
[74] Li J, Sui J H, Pei Y L. Energy Environ. Sci., 2012, 5(9):8543-8547
-
[75]
[75] Barreteau C, Berardan D, Amzallag E. Chem. Mater., 2012, 24(16):3168-3178
-
[1]
-
-
-
[1]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[2]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[3]
. . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.
-
[4]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[5]
Qianlang Wang , Jijun Sun , Qian Chen , Quanqin Zhao , Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205
-
[6]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040
-
[7]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[8]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[9]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[10]
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
-
[11]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[12]
Jinfeng Chu , Lan Jin , Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016
-
[13]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[14]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[15]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[16]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[17]
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
-
[18]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
-
[19]
Yihao Zhao , Jitian Rao , Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050
-
[20]
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
-
[1]
Metrics
- PDF Downloads(599)
- Abstract views(1092)
- HTML views(135)