Citation: DONG Jin-Kuang, XU Hai-Yan, CHEN Chen. Influence of Deposition Temperature on Growth Process and Opto-electronic Performance of Cu2O Thin Films[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 689-695. doi: 10.11862/CJIC.2014.062 shu

Influence of Deposition Temperature on Growth Process and Opto-electronic Performance of Cu2O Thin Films

  • Received Date: 29 July 2013
    Available Online: 9 October 2013

    Fund Project: 国家自然科学基金(No.20901001) (No.20901001)教育部(No.2011075) (No.2011075)安徽省教育厅(No.KJ2009B133)资助项目。 (No.KJ2009B133)

  • The nanocrystallite cuprous oxide (Cu2O) thin films with tunable crystallite size were prepared by a one-step chemical bath deposition (CBD) method, where copper sulfate was used as the copper precursor. The influence of deposition temperature on structure, crystallite size, nucleation site density, film thickness and opto-electronic properties of the thin films was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Vis spectroscopy. The results reveal that the crystallite size, film thickness and band gap of Cu2O thin films vary in the range of 33~51 nm, 392~556 nm and 2.47~2.61 eV, respectively, with the deposition temperature change in the range of 60~90 ℃. In addition, the absorption edges of UV-Vis transmittance spectra are blue-shifted apparently with the decrease in crystallite size. Meanwhile, the growth process and the mechanism for the varied nucleation site density and particle size of Cu2O thin films were also discussed.
  • 加载中
    1. [1]

      [1] Sahoo S, Husale S, Colwill B, et al. ACS Nano, 2009,3(12): 3935-3944

    2. [2]

      [2] de Jongh P E, Vanmaekelbergh D, Kelly J J. J. Electrochem. Soc., 2000,147(2):486-489

    3. [3]

      [3] ZHU Hong-Fei(朱红飞), CHEN Qian-Wang(陈乾旺), NIU He-Lin(牛和林), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2004,10(20):1172-1176

    4. [4]

      [4] Hara M, Kondo T, Komoda M, et al. Chem. Commun., 1998, 7(3):357-358

    5. [5]

      [5] Park J C, Kim J, Kwon H, et al. Adv. Mater., 2009,21(7): 803-807

    6. [6]

      [6] Xiang J Y, Tu J P, Huang X H, et al. J. Solid. State. Electr., 2008,12(7-8):941-945

    7. [7]

      [7] Musa A O, Akomolafe T, Carter M J. Sol. Energy Mater. Sol. Cells., 1998,51(3-4):305-316

    8. [8]

      [8] Rai B P. Solar Cells, 1988,25(3):265-272

    9. [9]

      [9] Jeong S H, Aydil E S. J. Cryst. Growth, 2009,311(17):4188-4192

    10. [10]

      [10] Akimoto K, Ishizuka S, Yanagita M, et al. Solar Energy, 2006,80(6):715-722

    11. [11]

      [11] Balamurugan B, Mehta B R. Thin Solid Films, 2001,396(1-2):90-96

    12. [12]

      [12] Sungping S, Cheng C L. Mater. Res. Bull., 2008,43(10): 2687-2696

    13. [13]

      [13] Shang W, Shi X, Zhang X, et al. Appl. Phys. A, 2007,87(1): 129-135

    14. [14]

      [14] Ahirrao P B, Sankapal B R, Patil R S. J. Alloys Compd., 2011,509(18):5551-5554

    15. [15]

      [15] Toshikazu N, Takayuki Y, Nobuyoshi M, et al. Thin Solid Films, 2004,467(1-2):43-49

    16. [16]

      [16] Siegfried M J, Choi K S. Adv. Mater, 2004,16(19):1743-1746

    17. [17]

      [17] WANG Hao(汪浩), XU Hai-Yan(徐海燕), YAN Hui(严辉). J. Funct. Mater.(功能材料), 2006,1(3):13-18

    18. [18]

      [18] Aref A A, Xiong L B, Yan N N, et al. Mater. Chem. Phys., 2011,127(3):433-439

    19. [19]

      [19] Xiong L, Yu H, Yang H, et al. Thin Solid Films, 2010,518 (23):6738-674

    20. [20]

      [20] Lare Y, Godoy A, Cattin L, et al. Appl. Surf. Sci., 2009,255 (13/14):6615-6619

    21. [21]

      [21] Lokhande C D, Lee E H, Jung K D, et al. Mater. Chem. Phys., 2005,91(1):200-204

    22. [22]

      [22] Xu H Y, Xu S L, Li X D, et al. Appl. Surf. Sci., 2006,252 (12):4091-4096

    23. [23]

      [23] Ahirraoa P B, Sankapalb B R, Patil R S. J. Alloys Compd., 2011,509(18):5551-5554

    24. [24]

      [24] Shishiyanu S T, Shishiyanu T S, Lupan O I. Sensor Actuat B: Chem, 2006,113(1):468-476

    25. [25]

      [25] Li J L, Liu L, Yu Y, et al. Electrochem. Comm., 2004,6(9): 940-943

    26. [26]

      [26] Xu H L, Wang W Z, Zhu W. J. Phys. Chem. B, 2006,110 (28):13829-13834

    27. [27]

      [27] Xu H Y, Dong J K, Chen C. Mater. Chem. Phys., 2013,DOI: 10.1016/j.matchemphys.2013.10.004

    28. [28]

      [28] Radi A, Pradhan D, Sohn Y, et al. ACS Nano, 2010,4(3): 1553-1560

    29. [29]

      [29] Borgohain K, Murase N, Mahamuni S. J. Appl. Phys., 2002, 92(3):1292-1297

    30. [30]

      [30] Singh D P, Singh J, Mishra P R, et al. Bull. Mater. Sci., 2008,31(3):319-325

    31. [31]

      [31] Kuo C H, Chen C H, Huang M H. Adv. Funct. Mater., 2007,17(18):3773-3780

    32. [32]

      [32] Tanaka K, Moritake N, Uchiki H. Sol. Energy Mater. Sol. Cells., 2007,91(13):1199-1201

  • 加载中
    1. [1]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    2. [2]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    3. [3]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    4. [4]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    5. [5]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    6. [6]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    7. [7]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    8. [8]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    12. [12]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    13. [13]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    14. [14]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    15. [15]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    18. [18]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    19. [19]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    20. [20]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

Metrics
  • PDF Downloads(0)
  • Abstract views(360)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return