Citation:
DONG Jin-Kuang, XU Hai-Yan, CHEN Chen. Influence of Deposition Temperature on Growth Process and Opto-electronic Performance of Cu2O Thin Films[J]. Chinese Journal of Inorganic Chemistry,
;2014, 30(3): 689-695.
doi:
10.11862/CJIC.2014.062
-
The nanocrystallite cuprous oxide (Cu2O) thin films with tunable crystallite size were prepared by a one-step chemical bath deposition (CBD) method, where copper sulfate was used as the copper precursor. The influence of deposition temperature on structure, crystallite size, nucleation site density, film thickness and opto-electronic properties of the thin films was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Vis spectroscopy. The results reveal that the crystallite size, film thickness and band gap of Cu2O thin films vary in the range of 33~51 nm, 392~556 nm and 2.47~2.61 eV, respectively, with the deposition temperature change in the range of 60~90 ℃. In addition, the absorption edges of UV-Vis transmittance spectra are blue-shifted apparently with the decrease in crystallite size. Meanwhile, the growth process and the mechanism for the varied nucleation site density and particle size of Cu2O thin films were also discussed.
-
-
-
[1]
[1] Sahoo S, Husale S, Colwill B, et al. ACS Nano, 2009,3(12): 3935-3944
-
[2]
[2] de Jongh P E, Vanmaekelbergh D, Kelly J J. J. Electrochem. Soc., 2000,147(2):486-489
-
[3]
[3] ZHU Hong-Fei(朱红飞), CHEN Qian-Wang(陈乾旺), NIU He-Lin(牛和林), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2004,10(20):1172-1176
-
[4]
[4] Hara M, Kondo T, Komoda M, et al. Chem. Commun., 1998, 7(3):357-358
-
[5]
[5] Park J C, Kim J, Kwon H, et al. Adv. Mater., 2009,21(7): 803-807
-
[6]
[6] Xiang J Y, Tu J P, Huang X H, et al. J. Solid. State. Electr., 2008,12(7-8):941-945
-
[7]
[7] Musa A O, Akomolafe T, Carter M J. Sol. Energy Mater. Sol. Cells., 1998,51(3-4):305-316
-
[8]
[8] Rai B P. Solar Cells, 1988,25(3):265-272
-
[9]
[9] Jeong S H, Aydil E S. J. Cryst. Growth, 2009,311(17):4188-4192
-
[10]
[10] Akimoto K, Ishizuka S, Yanagita M, et al. Solar Energy, 2006,80(6):715-722
-
[11]
[11] Balamurugan B, Mehta B R. Thin Solid Films, 2001,396(1-2):90-96
-
[12]
[12] Sungping S, Cheng C L. Mater. Res. Bull., 2008,43(10): 2687-2696
-
[13]
[13] Shang W, Shi X, Zhang X, et al. Appl. Phys. A, 2007,87(1): 129-135
-
[14]
[14] Ahirrao P B, Sankapal B R, Patil R S. J. Alloys Compd., 2011,509(18):5551-5554
-
[15]
[15] Toshikazu N, Takayuki Y, Nobuyoshi M, et al. Thin Solid Films, 2004,467(1-2):43-49
-
[16]
[16] Siegfried M J, Choi K S. Adv. Mater, 2004,16(19):1743-1746
-
[17]
[17] WANG Hao(汪浩), XU Hai-Yan(徐海燕), YAN Hui(严辉). J. Funct. Mater.(功能材料), 2006,1(3):13-18
-
[18]
[18] Aref A A, Xiong L B, Yan N N, et al. Mater. Chem. Phys., 2011,127(3):433-439
-
[19]
[19] Xiong L, Yu H, Yang H, et al. Thin Solid Films, 2010,518 (23):6738-674
-
[20]
[20] Lare Y, Godoy A, Cattin L, et al. Appl. Surf. Sci., 2009,255 (13/14):6615-6619
-
[21]
[21] Lokhande C D, Lee E H, Jung K D, et al. Mater. Chem. Phys., 2005,91(1):200-204
-
[22]
[22] Xu H Y, Xu S L, Li X D, et al. Appl. Surf. Sci., 2006,252 (12):4091-4096
-
[23]
[23] Ahirraoa P B, Sankapalb B R, Patil R S. J. Alloys Compd., 2011,509(18):5551-5554
-
[24]
[24] Shishiyanu S T, Shishiyanu T S, Lupan O I. Sensor Actuat B: Chem, 2006,113(1):468-476
-
[25]
[25] Li J L, Liu L, Yu Y, et al. Electrochem. Comm., 2004,6(9): 940-943
-
[26]
[26] Xu H L, Wang W Z, Zhu W. J. Phys. Chem. B, 2006,110 (28):13829-13834
-
[27]
[27] Xu H Y, Dong J K, Chen C. Mater. Chem. Phys., 2013,DOI: 10.1016/j.matchemphys.2013.10.004
-
[28]
[28] Radi A, Pradhan D, Sohn Y, et al. ACS Nano, 2010,4(3): 1553-1560
-
[29]
[29] Borgohain K, Murase N, Mahamuni S. J. Appl. Phys., 2002, 92(3):1292-1297
-
[30]
[30] Singh D P, Singh J, Mishra P R, et al. Bull. Mater. Sci., 2008,31(3):319-325
-
[31]
[31] Kuo C H, Chen C H, Huang M H. Adv. Funct. Mater., 2007,17(18):3773-3780
-
[32]
[32] Tanaka K, Moritake N, Uchiki H. Sol. Energy Mater. Sol. Cells., 2007,91(13):1199-1201
-
[1]
-
-
-
[1]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[2]
Jia Zhou , Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004
-
[3]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[4]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[5]
Zhinan GUO , Junli WANG , Qiang ZHAO , Zhifang JIA , Zuopeng LI , Kewei WANG , Yong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403
-
[6]
Zhi-Xin Li , Xiao-Feng Qiu , Pei-Qin Liao . Efficient electroreduction of CO2 to acetate with relative purity of 100% by ultrasmall Cu2O nanoparticle on a conductive metal-organic framework. Chinese Chemical Letters, 2025, 36(11): 110473-. doi: 10.1016/j.cclet.2024.110473
-
[7]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[8]
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
-
[9]
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
-
[10]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[11]
Limin Zhang , Mengmeng Liu , Yang Tian . Size Determines Performance: A Novel Experimental Design for Voltammetric Teaching at Microelectrode and Glassy Carbon Electrode. University Chemistry, 2025, 40(11): 281-288. doi: 10.12461/PKU.DXHX202412047
-
[12]
Hongpeng He , Mengmeng Zhang , Mengjiao Hao , Wei Du , Haibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043
-
[13]
Xiaojun Liu , Lang Qin , Yanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018
-
[14]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[15]
Shu'e Song , Xiaokui Wang , Yongmei Liu , Wanchun Zhu , Hong Yuan , Fuping Tian , Yunshan Bai , Yunchao Li , Li Wang , Zhongyun Wu , Yuan Chun , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026
-
[16]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[17]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
-
[18]
Xiaorui Chen , Xuan Luo , Tongming Su , Xinling Xie , Liuyun Chen , Yuejing Bin , Zuzeng Qin , Hongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126
-
[19]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[20]
Yupeng TANG , Haiying YANG , Fan JIN , Nan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(582)
- HTML views(75)
Login In
DownLoad: