Citation: DONG Jin-Kuang, XU Hai-Yan, CHEN Chen. Influence of Deposition Temperature on Growth Process and Opto-electronic Performance of Cu2O Thin Films[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 689-695. doi: 10.11862/CJIC.2014.062 shu

Influence of Deposition Temperature on Growth Process and Opto-electronic Performance of Cu2O Thin Films

  • Received Date: 29 July 2013
    Available Online: 9 October 2013

    Fund Project: 国家自然科学基金(No.20901001) (No.20901001)教育部(No.2011075) (No.2011075)安徽省教育厅(No.KJ2009B133)资助项目。 (No.KJ2009B133)

  • The nanocrystallite cuprous oxide (Cu2O) thin films with tunable crystallite size were prepared by a one-step chemical bath deposition (CBD) method, where copper sulfate was used as the copper precursor. The influence of deposition temperature on structure, crystallite size, nucleation site density, film thickness and opto-electronic properties of the thin films was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Vis spectroscopy. The results reveal that the crystallite size, film thickness and band gap of Cu2O thin films vary in the range of 33~51 nm, 392~556 nm and 2.47~2.61 eV, respectively, with the deposition temperature change in the range of 60~90 ℃. In addition, the absorption edges of UV-Vis transmittance spectra are blue-shifted apparently with the decrease in crystallite size. Meanwhile, the growth process and the mechanism for the varied nucleation site density and particle size of Cu2O thin films were also discussed.
  • 加载中
    1. [1]

      [1] Sahoo S, Husale S, Colwill B, et al. ACS Nano, 2009,3(12): 3935-3944

    2. [2]

      [2] de Jongh P E, Vanmaekelbergh D, Kelly J J. J. Electrochem. Soc., 2000,147(2):486-489

    3. [3]

      [3] ZHU Hong-Fei(朱红飞), CHEN Qian-Wang(陈乾旺), NIU He-Lin(牛和林), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2004,10(20):1172-1176

    4. [4]

      [4] Hara M, Kondo T, Komoda M, et al. Chem. Commun., 1998, 7(3):357-358

    5. [5]

      [5] Park J C, Kim J, Kwon H, et al. Adv. Mater., 2009,21(7): 803-807

    6. [6]

      [6] Xiang J Y, Tu J P, Huang X H, et al. J. Solid. State. Electr., 2008,12(7-8):941-945

    7. [7]

      [7] Musa A O, Akomolafe T, Carter M J. Sol. Energy Mater. Sol. Cells., 1998,51(3-4):305-316

    8. [8]

      [8] Rai B P. Solar Cells, 1988,25(3):265-272

    9. [9]

      [9] Jeong S H, Aydil E S. J. Cryst. Growth, 2009,311(17):4188-4192

    10. [10]

      [10] Akimoto K, Ishizuka S, Yanagita M, et al. Solar Energy, 2006,80(6):715-722

    11. [11]

      [11] Balamurugan B, Mehta B R. Thin Solid Films, 2001,396(1-2):90-96

    12. [12]

      [12] Sungping S, Cheng C L. Mater. Res. Bull., 2008,43(10): 2687-2696

    13. [13]

      [13] Shang W, Shi X, Zhang X, et al. Appl. Phys. A, 2007,87(1): 129-135

    14. [14]

      [14] Ahirrao P B, Sankapal B R, Patil R S. J. Alloys Compd., 2011,509(18):5551-5554

    15. [15]

      [15] Toshikazu N, Takayuki Y, Nobuyoshi M, et al. Thin Solid Films, 2004,467(1-2):43-49

    16. [16]

      [16] Siegfried M J, Choi K S. Adv. Mater, 2004,16(19):1743-1746

    17. [17]

      [17] WANG Hao(汪浩), XU Hai-Yan(徐海燕), YAN Hui(严辉). J. Funct. Mater.(功能材料), 2006,1(3):13-18

    18. [18]

      [18] Aref A A, Xiong L B, Yan N N, et al. Mater. Chem. Phys., 2011,127(3):433-439

    19. [19]

      [19] Xiong L, Yu H, Yang H, et al. Thin Solid Films, 2010,518 (23):6738-674

    20. [20]

      [20] Lare Y, Godoy A, Cattin L, et al. Appl. Surf. Sci., 2009,255 (13/14):6615-6619

    21. [21]

      [21] Lokhande C D, Lee E H, Jung K D, et al. Mater. Chem. Phys., 2005,91(1):200-204

    22. [22]

      [22] Xu H Y, Xu S L, Li X D, et al. Appl. Surf. Sci., 2006,252 (12):4091-4096

    23. [23]

      [23] Ahirraoa P B, Sankapalb B R, Patil R S. J. Alloys Compd., 2011,509(18):5551-5554

    24. [24]

      [24] Shishiyanu S T, Shishiyanu T S, Lupan O I. Sensor Actuat B: Chem, 2006,113(1):468-476

    25. [25]

      [25] Li J L, Liu L, Yu Y, et al. Electrochem. Comm., 2004,6(9): 940-943

    26. [26]

      [26] Xu H L, Wang W Z, Zhu W. J. Phys. Chem. B, 2006,110 (28):13829-13834

    27. [27]

      [27] Xu H Y, Dong J K, Chen C. Mater. Chem. Phys., 2013,DOI: 10.1016/j.matchemphys.2013.10.004

    28. [28]

      [28] Radi A, Pradhan D, Sohn Y, et al. ACS Nano, 2010,4(3): 1553-1560

    29. [29]

      [29] Borgohain K, Murase N, Mahamuni S. J. Appl. Phys., 2002, 92(3):1292-1297

    30. [30]

      [30] Singh D P, Singh J, Mishra P R, et al. Bull. Mater. Sci., 2008,31(3):319-325

    31. [31]

      [31] Kuo C H, Chen C H, Huang M H. Adv. Funct. Mater., 2007,17(18):3773-3780

    32. [32]

      [32] Tanaka K, Moritake N, Uchiki H. Sol. Energy Mater. Sol. Cells., 2007,91(13):1199-1201

  • 加载中
    1. [1]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    2. [2]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    3. [3]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    4. [4]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    5. [5]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    6. [6]

      Zhi-Xin LiXiao-Feng QiuPei-Qin Liao . Efficient electroreduction of CO2 to acetate with relative purity of 100% by ultrasmall Cu2O nanoparticle on a conductive metal-organic framework. Chinese Chemical Letters, 2025, 36(11): 110473-. doi: 10.1016/j.cclet.2024.110473

    7. [7]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    8. [8]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    9. [9]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    10. [10]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    11. [11]

      Limin Zhang Mengmeng Liu Yang Tian . Size Determines Performance: A Novel Experimental Design for Voltammetric Teaching at Microelectrode and Glassy Carbon Electrode. University Chemistry, 2025, 40(11): 281-288. doi: 10.12461/PKU.DXHX202412047

    12. [12]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    13. [13]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    14. [14]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    15. [15]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    18. [18]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    19. [19]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    20. [20]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

Metrics
  • PDF Downloads(0)
  • Abstract views(582)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return