Citation: XIAO Mi, YANG Zhao, ZHONG Xiao-Rong, XI Fang-Fang. Influence of Bi2O3 on the Structure and Dielectric Properties of Ag(Nb0.8Ta0.2)O3 Ceramics[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 649-653. doi: 10.11862/CJIC.2014.054 shu

Influence of Bi2O3 on the Structure and Dielectric Properties of Ag(Nb0.8Ta0.2)O3 Ceramics

  • Received Date: 3 July 2013
    Available Online: 26 September 2013

  • The effect of Bi2O3 doping on the structure and dielectric properties of Ag(Nb0.8Ta0.2)O3 ceramics was investigated in this paper. The results of X-ray diffraction (XRD) showed that the doping of Bi2O3 could tend to accelerate the reduction of Ag, which may originate from the substitution of Bi3+ for Ag+. A certain doping amount of Bi2O3 would result in the increase of dielectric constant, and the decrease of dielectric loss of Ag(Nb0.8Ta0.2)O3 ceramics at room temperature, and making temperature coefficient shift for negative direction. The reason for the improvement of dielectric properties was also discussed. When the amount of Bi2O3 was about 3.5wt%, the sample had the best dielectric properties, larger permittivity (ε=672) and smaller dielectric loss (tanδ=7.3×10-4).
  • 加载中
    1. [1]

      [1] Valant M, Suvorov D. J. Am. Ceram. Soc., 1999,82(1):81-87

    2. [2]

      [2] Valant M, Suvorov D. J. Am. Ceram. Soc., 1999,82(1):88-93

    3. [3]

      [3] GUO Xiu-Ying(郭秀英), XIAO Mi(肖谧), WU Xia-Wan(吴 霞宛), et al. J. Wuhan Univ. Tech.-Mater. Sci. Ed.(武汉工 业大学学报), 2007,22(3):518-521

    4. [4]

      [4] Zimmermann F, Menesklou W, Ivers-Tiffee E. J. Eur. Ceram. Soc., 2004,24(6):1811-1814

    5. [5]

      [5] You H W, Koh J H. Microelectron. J., 2007,38:222-226

    6. [6]

      [6] Petzelt J, Kamba S, Buixaderas E, et al. J. Am. Ceram. Soc.,2007,90(8):2467-2471

    7. [7]

      [7] Paweczyk M. Phase Transitions, 1987,8(4):273-292

    8. [8]

      [8] Valant M, Suvorov D, Hoffmann C, et al. J. Eur. Ceram. Soc., 2001,21(15):2647-2651

    9. [9]

      [9] Lei C, Ye Z G. Appl. Phys. Lett., 2008,93(4):042901-042901

    10. [10]

      [10] Kania A. J. Phys. D: Appl. Phys., 2001,34:1447-1455

    11. [11]

      [11] Sakabe Y, Takeda T, Ogiso Y, et al. Jpn. J. Appl. Phys., 2001,40(9B):5675-5678

    12. [12]

      [12] Guo X Y, Xiao M, Ding W, et al. Mater. Lett., 2006,60(29): 3651-3654

    13. [13]

      [13] Guo X Y, Zhu N, Xiao M, et al. J. Am. Ceram. Soc., 2007, 90(8):2467-2471

    14. [14]

      [14] Verwerft M, Van D D, Brabers, et al. Phys. Stat. Sol. A: Appl. Res., 1989,112(2):451-466

    15. [15]

      [15] GUO Xiu-Ying(郭秀英), XIAO Mi(肖谧), WU Xia-Wan(吴 霞宛), et al. J. Tianjin Univ.(天津大学学报), 2006,12(1):28 -32

    16. [16]

      [16] Halder N, Sharma Das A, Khan S K, et al. Mater. Res. Bull., 1999,34(4):545-550

    17. [17]

      [17] Chen R Z, Wang X H, Wen H, et al. Ceram. Inter., 2004, 30:1271-1274

    18. [18]

      [18] Huang J Q, Cao Y G, Hong M C. Appl. Phys. Lett., 2008, 92:022911

    19. [19]

      [19] Kim W S, Hong T H, Kim E S, et al. Jpn. J. Appl. Phys., 1998,37:5367-5371

    20. [20]

      [20] Ogawa H, Taketani H, Kan A, et al. J. Eur. Ceram. Soc., 2005,25:2859-2863

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Ao XIABotao YUJun CHENGuoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    7. [7]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    8. [8]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    9. [9]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-0. doi: 10.3866/PKU.WHXB202404023

    10. [10]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    11. [11]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    12. [12]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    13. [13]

      Guanghui Wang Chen Qian Zhiyong Ma . Preparation and Characterization of 7H-Benzo[C]Carbazole Based Ultra-Long Organic Room Temperature Phosphorescence Material. University Chemistry, 2025, 40(11): 289-299. doi: 10.12461/PKU.DXHX202412062

    14. [14]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    15. [15]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    16. [16]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    17. [17]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    20. [20]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

Metrics
  • PDF Downloads(0)
  • Abstract views(553)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return