Citation: SUN Li-Ping, ZHAO Hui, WANG Wen-Xue, LI Qiang, HUO Li-Hua. Electrochemical Performance of La2CuO4 Nanotube Materials Prepared via Electrospinning Method[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 757-762. doi: 10.11862/CJIC.2014.044 shu

Electrochemical Performance of La2CuO4 Nanotube Materials Prepared via Electrospinning Method

  • Corresponding author: ZHAO Hui, 
  • Received Date: 11 June 2013
    Available Online: 10 October 2013

    Fund Project: 国家自然科学基金(No.51072048,51102083);黑龙江省杰出青年科学基金(JC201211) (No.51072048,51102083);黑龙江省杰出青年科学基金(JC201211)黑龙江省自然科学基金(B201107)资助项目。 (B201107)

  • La2CuO4 nanotubes are successfully synthesized by electro-spinning technology. The structure and morphology of the materials are characterized by XRD, TG-DTA and SEM, respectively. The results show that La2CuO4 nanotubes with an average diameter of 150 nm are obtained after sintering at 700 ℃ for 2 h. The La2CuO4 nanotube forms sufficient connection with each other, and good contact with the electrolyte after sintering at 900 ℃ for 0.5 h. Comparing the results obtained by Electrochemical Impedance Spectroscopy (EIS), it is clearly observed that the nanotube cathode exhibits superior performance than the powder cathode. The area specific resistance (ASR) of the nanotube cathode is 1.03 Ω·cm2 at 700 ℃ in air, whereas for the powder one with the same composition, the ASRis 1.61 Ω·cm2. The oxygen partial pressure measurement indicates that the charge transfer process is the rate-limiting step of the nanotube electrode reactions.
  • 加载中
    1. [1]

      [1] Liu M L, Lynch M E, Blinn K, et al. Materialstoday, 2011, 14(11):534-546

    2. [2]

      [2] Zhou W, Ran R, Shao Z P. J. Power Sources, 2009, 192:231-246

    3. [3]

      [3] Huang J B, Xie F C, Wang C, et al. Int. J. Hydrogen Energy, 2012, 37:877-883

    4. [4]

      [4] Tietz F, Mai A, Stver D. Solid State Ionics, 2008, 179:1509-1515

    5. [5]

      [5] Kivi I, Mller P, Kurig H, et al. Electrochem. Commun., 2008, 10:1455-1458

    6. [6]

      [6] Zhu X B, Ding D, Li Y Q, et al. Int. J. Hydrogen Energy, 2013, 38:5375-5382

    7. [7]

      [7] Gao Z, Mao Z Q, Wang C, et al. Int. J. Hydrogen Energy, 2011, 36:7229-7233

    8. [8]

      [8] Ortiz-Vitoriano N, Ruiz de Larramendi I, Ruiz de Larramendi I J, et al. J. Power Sources, 2009, 192:63-69

    9. [9]

      [9] Suzuki T, Takahashi Y, Hamanoto K, et al. Int. J. Hydrogen Energy, 2011, 36:10998-11003

    10. [10]

      [10] Sun L P, Zhao H, Li Qiang, et al. Int.J. Hydrogen Energy, 2011, 36:12555-12560

    11. [11]

      [11] Li Q, Sun L P, Huo L H, et al. J. Solid State Electrochem., 2012, 16:1169-1174

    12. [12]

      [12] Li Q, Sun L P, Huo L H, et al. J. Power Sources, 2011, 196: 1712-1716

    13. [13]

      [13] Pinedo R, Ruiz de Larramendi I, Jimenez de Aberasturi D, et al. J. Power Sources, 2011, 196:4174-4180

    14. [14]

      [14] Sacanell J, Bellino M G, Lamas D G, et al. Physica B, 2007, 398:341-343

    15. [15]

      [15] Sacanell J, Leyva A G, Bellino M G, et al. J. Power Sources, 2010, 195:1786-1792

    16. [16]

      [16] Zhang N Q, Li J, He Z L, et al. Electrochem. Commun., 2011, 13:570-573

    17. [17]

      [17] Sun L P, Li Q, Zhao H, et al. Int. J. Hydrogen Energy, 2012, 37:11955-11962

    18. [18]

      [18] Gao L Z, Chua H T, Kawi S. J. Solid State Chemistry, 2008, 181:2804-2807

    19. [19]

      [19] Yuan J, Dai H X, Zhang L, et al. Catal. Today, 2011, 175: 209-215

    20. [20]

      [20] Chen L, Dong C, Huang Y Z, et al. Solid State Commun, 2000, 114:107-111

    21. [21]

      [21] Hirayama T, Nakagava M, Oda Y. Solid State Sciences, 2000, 113:121-124

    22. [22]

      [22] Zhao H, Huo L H, Gao S. J. Power Sources, 2004, 125:149-154

    23. [23]

      [23] Bebelis S, Kotsionopoulos N, Mai A, et al. Solid State Ionics, 2006, 177:1843-1848

    24. [24]

      [24] Zhan G, Liu X M, Bergman B, et al. J. Power Sources, 2011, 196:9195-9203

    25. [25]

      [25] Kim J D, Kim G D, Moon J W, et al. Solid State Ionics, 2001, 143:379-389

  • 加载中
    1. [1]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    3. [3]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    7. [7]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    11. [11]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    12. [12]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    13. [13]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    14. [14]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    15. [15]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    16. [16]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    17. [17]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    18. [18]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    19. [19]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    20. [20]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(0)
  • Abstract views(504)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return