Citation: WANG Li-Na, LI Shuang, HUANG Fu-Ping, YU Qing, BIAN He-Dong, CHEN Zhen-Feng, LIANG Hong. Conformational Changes of Human Serum Albumin by Plumbagin in Presence of Cu2+ or Mn2+[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(5): 1151-1159. doi: 10.11862/CJIC.2014.027 shu

Conformational Changes of Human Serum Albumin by Plumbagin in Presence of Cu2+ or Mn2+

  • Received Date: 27 April 2013
    Available Online: 23 July 2013

    Fund Project: 国家自然科学基金(No.21361003,21061002);教育部留学回国人员科研启动基金;广西自然科学基金(Nos.2010GXNSFF013001,2011GXNSFC018009);药用资源化学与药物分子工程教育部重点实验室主任基金(CMEMR2011-20,CMEMR2012-A02);广西医药产业人才小高地项目(No.1201)资助。 (No.21361003,21061002);教育部留学回国人员科研启动基金;广西自然科学基金(Nos.2010GXNSFF013001,2011GXNSFC018009);药用资源化学与药物分子工程教育部重点实验室主任基金(CMEMR2011-20,CMEMR2012-A02);广西医药产业人才小高地项目(No.1201)

  • Circular dichroism (CD) and Raman spectroscopy were employed to investigate the binding of plumbagin (PLU) to human serum albumin (HSA) in the presence of Cu2+ or Mn2+. The results indicate that PLU changes the secondary structure of HSA and reduces the α-helix content. The binding of PLUalso causes the conformational changes of disulfide bridges and the microenvironment of Tyr, Trp residues. In the presence of the metal ion (Cu2+or Mn2+), the above changes are gradually strengthened.
  • 加载中
    1. [1]

      [1] Chiu N Y, Chang K H. Zingiberaceae. Taipei: SMC Publishing Inc. 1986, 172

    2. [2]

      [2] Sugie S, Okamoto K, Rahman K M, et al. Cancer Lett., 1998, 127:177-183

    3. [3]

      [3] Chan-Bacab M J, Pena-Rodrfguez L M. Nat. Prod. Rep., 2001, 18:674-688

    4. [4]

      [4] Didry N, Dubreuil L, Trotin F, et al. J. Ethnopharmacol., 1998, 60:91-96

    5. [5]

      [5] Hsieh Y J, Lin L C, Tsai T H. J. Chromatogr. B, 2006, 844: 1-5

    6. [6]

      [6] Dai Y, Hou L F, Chan Y P, et al. Biol. Pharm. Bull., 2004, 27:429-432

    7. [7]

      [7] Wang Y C, Huang T L. FEMS. Immunol. Med. Microbiol., 2005, 43:407-412

    8. [8]

      [8] Honore B. Pharmacol. Toxicol., 1990, 66:7-26

    9. [9]

      [9] Laussac J P, Sarkar B. Biochemistry, 1984, 23:2832-2838

    10. [10]

      [10] Zhou Y Q, Wang Y W, Hu X Y, et al. Biophys. Chem., 1994, 51:81-87

    11. [11]

      [11] LIANG Hong(梁宏), OUYANG Di(欧阳砥), HU Xu-Ying (胡绪英), et al. Acta Chim. Sin. (化学学报), 1998, 56: 662-667

    12. [12]

      [12] Liang H, Huang J, Tu C Q, et al. J. Inorg. Biochem., 2001, 85(2):167-171

    13. [13]

      [13] SHEN Xing-Can(沈星灿), BIAN He-Dong(边贺东), TU Chu-Qiao(涂楚桥), et al. Chinese J. Inorg. Chem. (无机化 学学报), 2000, 16:73-78

    14. [14]

      [14] Sadler P J, Viles J H. Inorg. Chem., 1996, 35:4490-4496

    15. [15]

      [15] Tian M Y, Zhang X F, Xie L, et al. J. Mol. Struct., 2008, 892:20-24

    16. [16]

      [16] Li S, Yao D, Bian H d, et al. J. Solution Chem., 2011, 40(4): 709-718

    17. [17]

      [17] Kawiak A, Piosik J, Stasilojc G, et al. Toxicol. Appl. Pharmacol., 2007, 223(3):267-276

    18. [18]

      [18] YANG Pin(杨频), GAO Fei(高飞). Principle of Bioinorganic Chemistry(生物无机化学原理). Beijing: Science Press, 2002:349

    19. [19]

      [19] Hu Y J, Liu Y, Zhang L X, et al. J. Mol. Struct., 2005, 750 (1):174-178

    20. [20]

      [20] Qian W, Krimm S. Biopolymers, 1992, 32(4):321-326

    21. [21]

      [21] David C, Foley S, Mavon C, et al. Biopolymers, 2008, 89(7): 623-634

    22. [22]

      [22] (a) Taillandier E, Liquier J, Ghomi M. J. Mol. Struct., 1989, 214:185-211

    23. [23]

      (b) Schweitzer-Stenner R. Vib. Spectrosc., 2006, 42:98-117

    24. [24]

      (c) David C, Foley S, Mavon C, et al. Biopolymers, 2008, 89 (7):623-634

    25. [25]

      [23] (a) Murayama K, Tomida M. Biochemistry, 2004, 43(36): 11526-11532

    26. [26]

      (b) Fontecha J, Bellanato J, Juarez M. J. Dairy Sci., 1993, 76 (11):3303-3309

    27. [27]

      [24] (a) Sane S U, Cramer S M, Przybycien T M. Anal. Biochem., 1999, 269(2):255-272

    28. [28]

      (b) Pelton J T, McLean L R. Anal. Biochem., 2000, 277(2): 167-176

    29. [29]

      [25] (a) Smith B M, Franzen S. Anal. Chem., 2002, 74(16):4076-4080

    30. [30]

      (b) Surewicz W K, Moscarello M A, Mantsch H H. J. Biol. Chem., 1987, 262(18):8598-8602

    31. [31]

      [26] Sugeta H, Go A, Miyazawa T. Bull. Chem. Soc. Jpn., 1973, 46:3407-3411

    32. [32]

      [27] Sugeta H, Go A, Miyazawa T. Chem. Lett., 1972, 4:83-86

    33. [33]

      [28] Tuma R. J. Raman Spectrosc., 2005, 36(4):307-319

    34. [34]

      [29] Torreggiani A, Fagnano C, Fini G. J. Raman Spectrosc., 1997, 28(1):23-27

    35. [35]

      [30] Susi H, Byler D M. Biochem. Biophys. Res. Commun., 1983, 115:391-397

    36. [36]

      [31] Carey P R. Biochemical Applications of Raman and Resonance Raman Spectroscopies. New York: Academic Press, 1982:71

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    3. [3]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    4. [4]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    5. [5]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    6. [6]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    7. [7]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    8. [8]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    9. [9]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    10. [10]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    11. [11]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    12. [12]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    13. [13]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    14. [14]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    15. [15]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    16. [16]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    17. [17]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    18. [18]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    19. [19]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    20. [20]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

Metrics
  • PDF Downloads(0)
  • Abstract views(796)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return