Citation: Bo Duan, Hu Tu, Li-na Zhang. Material Research Progress of the Sustainable Polymer-Cellulose[J]. Acta Polymerica Sinica, ;2020, 51(1): 66-86. doi: 10.11777/j.issn1000-3304.2020.19160 shu

Material Research Progress of the Sustainable Polymer-Cellulose

  • The “Green Chemistry” has become the strategy direction of research and development of the world in the 21th century. Cellulose, as the most abundant natural polymers, is a very important renewable resource and the main industrial raw material. The cellulose shows many great advances including biocompatibility, biodegradability, high structure stability. However, due to the large amounts of inter- and intra-hydrogen bonding among the cellulose molecules, the cellulose has a dense structure and is very hard to be processed through dissolution or melt, which limit the further exploitation of the cellulose resource. The traditional organic solution of the cellulose often has the problem of high cost and pollution. In recent decades, with the development of the “Green” solvent (alkaline/urea, ionic liquid, etc.) and the cellulose nanotechnology, the researchers have greatly expanded the cellulose application in biomedical, energy storage, optical fields in addition to the traditional spinning and papermaking industry. This review mainly introduces the new methods (“bottom to up” and “up to down”) for the exploitation of cellulose based materials in recent years through the following four sections: (1) the regenerated cellulose based materials from the “green” solution-alkaline/urea aqueous and ionic liquid; (2) the preparation and self-assembly of the nanocellulose; (3) the development and utilization of the wood nanotechnology; (4) bacterial cellulose based functional materials.
  • 加载中
    1. [1]

    2. [2]

      Macarthur E. Science, 2017, 358(6365): 843  doi: 10.1126/science.aao6749

    3. [3]

      Science, 2017, 358(6369): 1362 − 1363

    4. [4]

      Lamb J B, Willis B L, Fiorenza E A, Couch C S, Howard R, Rader D N, True J D, Kelly L A, Ahmad A, Jompa J. Science, 2018, 359(6374): 460 − 462  doi: 10.1126/science.aar3320

    5. [5]

      People’s Daily Overseas Edition, 2019-07-05

    6. [6]

      Zhu Y, Romain C, Williams C K. Nature, 2016, 540: 354 − 362  doi: 10.1038/nature21001

    7. [7]

      Smaglik P. Nature, 2000, 406: 807 − 808  doi: 10.1038/35021181

    8. [8]

      Wang S, Lu A, Zhang L. Prog Polym Sci, 2016, 53: 169 − 206  doi: 10.1016/j.progpolymsci.2015.07.003

    9. [9]

      Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han C C, Kuga S. Macromolecules, 2008, 41(23): 9345 − 9351  doi: 10.1021/ma801110g

    10. [10]

      Jiang Z, Fang Y, Xiang J, Ma Y, Lu A, Kang H, Huang Y, Guo H, Liu R, Zhang L. J Phys Chem B, 2014, 118(34): 10250 − 10257  doi: 10.1021/jp501408e

    11. [11]

      Wang S, Sun P, Liu M, Lu A, Zhang L. Phys Chem Chem Phys, 2017, 19(27): 17909 − 17917  doi: 10.1039/C7CP02514A

    12. [12]

      Wang S, Sun P, Zhang R, Lu A, Liu M, Zhang L. Phys Chem Chem Phys, 2017, 19(11): 7486 − 7490  doi: 10.1039/C6CP08744B

    13. [13]

      Wang Y, Liu L, Chen P, Zhang L, Lu A. Phys Chem Chem Phys, 2018, 20(20): 14223 − 14233  doi: 10.1039/C8CP01268G

    14. [14]

      Ye D, Cheng Q, Zhang Q, Wang Y, Chang C, Li L, Peng H, Zhang L. ACS Appl Mater Interfaces, 2017, 9(49): 43154 − 43162  doi: 10.1021/acsami.7b14900

    15. [15]

      Zhao D, Huang J, Zhong Y, Li K, Zhang L, Cai J. Adv Funct Mater, 2016, 26(34): 6279 − 6287  doi: 10.1002/adfm.201601645

    16. [16]

      Ye D, Lei X, Li T, Cheng Q, Chang C, Hu L, Zhang L. ACS Nano, 2019, 13(4): 4843 − 4853  doi: 10.1021/acsnano.9b02081

    17. [17]

      Ye D, Yang P, Lei X, Zhang D, Li L, Chang C, Sun P, Zhang L. Chem Mater, 2018, 30(15): 5175 − 5183  doi: 10.1021/acs.chemmater.8b01799

    18. [18]

      Ye D, Chang C, Zhang L. Biomacromolecules, 2019, 20(5): 1989 − 1995  doi: 10.1021/acs.biomac.9b00204

    19. [19]

      Zhu K, Qiu C, Lu A, Luo L, Guo J, Cong H, Chen F, Liu X, Zhang X, Wang H, Cai J, Fu Q, Zhang L. ACS Sustain Chem Eng, 2018, 6(4): 5314 − 5321  doi: 10.1021/acssuschemeng.8b00039

    20. [20]

      Qiu C, Zhu K, Yang W, Wang Y, Zhang L, Chen F, Fu Q. Biomacromolecules, 2018, 19(11): 4386 − 4395  doi: 10.1021/acs.biomac.8b01262

    21. [21]

      Xu D, Chen C, Xie J, Zhang B, Miao L, Cai J, Huang Y, Zhang L. Adv Energy Mater, 2016, 6(6): 1501929  doi: 10.1002/aenm.201501929

    22. [22]

      Xu D, Fan L, Gao L, Xiong Y, Wang Y, Ye Q, Yu A, Dai H, Yin Y, Cai J, Zhang L. ACS Appl Mater Interfaces, 2016, 8(27): 17090 − 17097  doi: 10.1021/acsami.6b03555

    23. [23]

      Dai L, Zhu W, Lu J, Kong F, Si C, Ni Y. Green Chem, 2019, 21(19): 5222 − 5230  doi: 10.1039/C1039GC01975H

    24. [24]

      Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J Am Chem Soc, 2002, 124(18): 4974 − 4975  doi: 10.1021/ja025790m

    25. [25]

      Zhang H, Wu J, Zhang J, He J. Macromolecules, 2005, 38(20): 8272 − 8277  doi: 10.1021/ma0505676

    26. [26]

      Raghuwanshi V S, Cohen Y, Garnier G, Garvey C J, Russell R A, Darwish T, Garnier G. Macromolecules, 2018, 51(19): 7649 − 7655  doi: 10.1021/acs.macromol.8b01425

    27. [27]

      Liu H, Sale K L, Holmes B M, Simmons B A, Singh S. J Phys Chem B, 2010, 114(12): 4293 − 4301  doi: 10.1021/jp9117437

    28. [28]

      Rabideau B D, Ismail A E. J Phys Chem B, 2012, 116(32): 9732 − 9743  doi: 10.1021/jp305469p

    29. [29]

      Vitz J, Erdmenger T, Haensch C, Schubert U. Green Chem, 2009, 11(3): 417 − 424  doi: 10.1039/b818061j

    30. [30]

      Mazza M, Catana D A, Vaca-Garcia C, Cecutti C J C. Cellulose, 2009, 16(2): 207 − 215  doi: 10.1007/s10570-008-9257-x

    31. [31]

      Wan J, Zhang J, Yu J, Zhang J. ACS Appl Mater Interfaces, 2017, 9(29): 24591 − 24599  doi: 10.1021/acsami.7b06271

    32. [32]

      Zhang J, Zhang H, Wu J, Zhang J, He J, Xiang J F. Phys Chem Chem Phys, 2010, 12: 1941 − 1947  doi: 10.1039/b920446f

    33. [33]

      Luo N, Lv Y, Wang D, Zhang J, Wu J, He J, Zhang J. Chem Commun, 2012, 48: 6283 − 6285  doi: 10.1039/c2cc31483e

    34. [34]

      Zhang J, Xu L, Yu J, Wu J, Zhang X, He J, Zhang J. Sci China Chem, 2016, 59: 1421 − 1429  doi: 10.1007/s11426-016-0269-5

    35. [35]

      Liu J, Zhang J, Zhang B, Zhang X, Xu L, Zhang J, He J, Liu C Y. Cellulose, 2016, 23: 2341 − 2348  doi: 10.1007/s10570-016-0967-1

    36. [36]

      Zhang J, Chen W, Feng Y, Wu J, Yu J, He J, Zhang J. Polym Int, 2015, 64: 963 − 970  doi: 10.1002/pi.4883

    37. [37]

      Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J. Mater Chem Front, 2017, 1: 1273 − 1290  doi: 10.1039/C6QM00348F

    38. [38]

      Zhang J, Luo N, Zhang X, Xu L, Wu J, Yu J, He J, Zhang J. ACS Sustain Chem Eng, 2016, 4(8): 4417 − 4423  doi: 10.1021/acssuschemeng.6b01034

    39. [39]

      Mi Q, Ma S-r, Yu J, He J, Zhang J. ACS Sustain Chem Eng, 2016, 4: 656 − 660  doi: 10.1021/acssuschemeng.5b01079

    40. [40]

      Nguyen N A, Kim K, Bowland C C, Keum J K, Kearney L T, André N, Labbé N, Naskar A K. Green Chem, 2019, 21(16): 4354 − 4367  doi: 10.1039/C9GC00774A

    41. [41]

      Yang S, Lu X, Zhang Y, Xu J, Xin J, Zhang S. Cellulose, 2018, 25(6): 3241 − 3254  doi: 10.1007/s10570-018-1785-4

    42. [42]

      Shamshina J L, Zavgorodnya O, Choudhary H, Frye B, Newbury N, Rogers R D. ACS Sustain Chem Eng, 2018, 6(11): 14713 − 14722  doi: 10.1021/acssuschemeng.8b03269

    43. [43]

      Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A. Biomacromolecules, 2008, 10(1): 162 − 165

    44. [44]

      Nogi M, Iwamoto S, Nakagaito A N, Yano H. Adv Mater, 2009, 21(16): 1595 − 1598  doi: 10.1002/adma.200803174

    45. [45]

      Ansari F, Salajková M, Zhou Q, Berglund L A. Biomacromolecules, 2015, 16: 3916 − 3924  doi: 10.1021/acs.biomac.5b01245

    46. [46]

      Kang X, Kuga S, Wang C, Zhao Y, Wu M, Huang Y. ACS Sustain Chem Eng, 2018, 6(3): 2954 − 2960  doi: 10.1021/acssuschemeng.7b02363

    47. [47]

      Kang X, Sun P, Kuga S, Wang C, Zhao Y, Wu M, Huang Y. ACS Sustain Chem Eng, 2017, 5(3): 2529 − 2534  doi: 10.1021/acssuschemeng.6b02867

    48. [48]

      Ci J, Cao C, Kuga S, Shen J, Wu M, Huang Y. ACS Sustain Chem Eng, 2017, 5(11): 9614 − 9618  doi: 10.1021/acssuschemeng.7b01970

    49. [49]

      Saito T, Kimura S, Nishiyama Y, Isogai A. Biomacromolecules, 2007, 8(8): 2485 − 2491  doi: 10.1021/bm0703970

    50. [50]

      De France K J, Hoare T, Cranston E D. Chem Mater, 2017, 29(11): 4609 − 4631  doi: 10.1021/acs.chemmater.7b00531

    51. [51]

      Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergström L. Nat Nanotechnol, 2014, 10: 277 − 283

    52. [52]

      Xiong R, Yu S, Smith M J, Zhou J, Krecker M, Zhang L, Nepal D, Bunning T J, Tsukruk V V. ACS Nano, 2019, 13(8): 9047 − 9081  doi: 10.1021/acsnano.1029b03305

    53. [53]

      Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. Biomacromolecules, 2015, 16(5): 1489 − 1496  doi: 10.1021/acs.biomac.5b00188

    54. [54]

      Lundahl M J, Klar V, Wang L, Ago M, Rojas O J. Ind Eng Chem Res, 2017, 56(1): 8 − 19  doi: 10.1021/acs.iecr.6b04010

    55. [55]

      Richardson J J, Tardy B L, Guo J, Liang K, Rojas O J, Ejima H. ACS Sustain Chem Eng, 2019, 7(6): 6287 − 6294  doi: 10.1021/acssuschemeng.8b06713

    56. [56]

      Voisin H, Bergström L, Liu P, Mathew A P J N. Nanomaterials, 2017, 7(3): 57  doi: 10.3390/nano7030057

    57. [57]

      Zheng H, Li W, Li W, Wang X, Tang Z, Zhang S X A, Xu Y. Adv Mater, 2018, 30(13): 1705948  doi: 10.1002/adma.201705948

    58. [58]

      Xu Y, Atrens A D, Stokes J R. Soft Matter, 2019, 15(8): 1716 − 1720  doi: 10.1039/C8SM02288G

    59. [59]

      Chu G, Qu D, Zussman E, Xu Y. Chem Mater, 2017, 29(9): 3980 − 3988  doi: 10.1021/acs.chemmater.7b00361

    60. [60]

      Hiratani T, Kose O, Hamad W Y, MacLachlan M J. Mater Horiz, 2018, 5(6): 1076 − 1081  doi: 10.1039/C8MH00586A

    61. [61]

      Kaushik M, Basu K, Benoit C, Cirtiu C M, Vali H, Moores A. J Am Chem Soc, 2015, 137(19): 6124 − 6127  doi: 10.1021/jacs.5b02034

    62. [62]

      Gu J, Hu C, Zhang W, Dichiara A B. Appl Catal B, 2018, 237: 482 − 490  doi: 10.1016/j.apcatb.2018.06.002

    63. [63]

      Ellebracht N C, Jones C W. ACS Catal, 2019, 9(4): 3266 − 3277  doi: 10.1021/acscatal.8b05180

    64. [64]

      Qin X, Xia W, Sinko R, Keten S. Nano Lett, 2015, 15(10): 6738 − 6744  doi: 10.1021/acs.nanolett.5b02588

    65. [65]

      Biswas S K, Tanpichai S, Witayakran S, Yang X, Shams M I, Yano H. ACS Nano, 2019, 13(2): 2015 − 2023

    66. [66]

      Zhu L, Zhou X, Liu Y, Fu Q. ACS Appl Mater Interfaces, 2019, 11(13): 12968 − 12977  doi: 10.1021/acsami.9b00136

    67. [67]

      Wu K, Fang J, Ma J, Huang R, Chai S, Chen F, Fu Q. ACS Appl Mater Interfaces, 2017, 9(35): 30035 − 30045  doi: 10.1021/acsami.7b08214

    68. [68]

      Yang W, Zhang Y, Liu T, Huang R, Chai S, Chen F, Fu Q. ACS Sustain Chem Eng, 2017, 5(10): 9102 − 9113  doi: 10.1021/acssuschemeng.7b02012

    69. [69]

      Cheng Q, Ye D, Chang C, Zhang L. J Membr Sci, 2017, 525: 1 − 8  doi: 10.1016/j.memsci.2016.11.084

    70. [70]

      Zhu L, Zong L, Wu X, Li M, Wang H, You J, Li C. ACS Nano, 2018, 12(5): 4462 − 4468  doi: 10.1021/acsnano.8b00566

    71. [71]

      Zhu H, Yang X, Cranston E D, Zhu S. Adv Mater, 2016, 28(35): 7652 − 7657  doi: 10.1002/adma.201601351

    72. [72]

      Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, Li Y, Kuang Y, Li Y, Quispe N, Yao Y, Gong A, Leiste U H, Bruck H A, Zhu J Y, Vellore A, Li H, Minus M L, Jia Z, Martini A, Li T, Hu L. Nature, 2018, 554(7691): 224 − 228  doi: 10.1038/nature25476

    73. [73]

      Gan W, Chen C, Wang Z, Song J, Kuang Y, He S, Mi R, Sunderland P B, Hu L. Adv Funct Mater, 2019, 29(14): 1807444  doi: 10.1002/adfm.201807444

    74. [74]

      Li T, Zhai Y, He S, Gan W, Wei Z, Heidarinejad M, Dalgo D, Mi R, Zhao X, Song J, Dai J, Chen C, Aili A, Vellore A, Martini A, Yang R, Srebric J, Yin X, Hu L. Science, 2019, 364(6442): 760 − 763  doi: 10.1126/science.aau9101

    75. [75]

      Chen C, Zhang Y, Li Y, Dai J, Song J, Yao Y, Gong Y, Kierzewski I, Xie J, Hu L. Energy Environ Sci, 2017, 10: 538 − 545  doi: 10.1039/C6EE03716J

    76. [76]

      Song H, Xu S, Li Y, Dai J, Hu L. Adv Energy Mater, 2017, 8(4): 1701203

    77. [77]

      Xu S, Chen C, Kuang Y, Song J, Gan W, Liu B, Hitz E M, Connell J W, Lin Y, Hu L. Energy Environ Sci, 2018, 11(11): 3231 − 3237  doi: 10.1039/C8EE01468J

    78. [78]

      He S, Chen C, Kuang Y, Mi R, Liu Y, Pei Y, Kong W, Gan W, Xie H, Hitz E, Jia C, Chen X, Gong A, Liao J, Li J, Ren Z J, Yang B, Das S, Hu L. Energy Environ Sci, 2019, 12(5): 1558 − 1567  doi: 10.1039/C9EE00945K

    79. [79]

      Li T, Liu H, Zhao X, Chen G, Dai J, Pastel G, Jia C, Chen C, Hitz E, Siddhartha D, Yang R, Hu L. Adv Funct Mater, 2018, 28(16): 1707134  doi: 10.1002/adfm.201707134

    80. [80]

      Zhu M, Li Y, Chen G, Jiang F, Yang Z, Luo X, Wang Y, Lacey S D, Dai J, Wang C, Jia C, Wan J, Yao Y, Gong A, Yang B, Yu Z, Das S, Hu L. Adv Mater, 2017, 29(44): 1704107  doi: 10.1002/adma.201704107

    81. [81]

      Kuang Y, Chen C, He S, Hitz E M, Wang Y, Gan W, Mi R, Hu L. Adv Mater, 2019, 31(23): 1900498

    82. [82]

      Picheth G F, Pirich C L, Sierakowski M R, Woehl M A, Sakakibara C N, de Souza C F, Martin A A, da Silva R, de Freitas R A. Int J Biol Macromol, 2017, 104: 97 − 106  doi: 10.1016/j.ijbiomac.2017.05.171

    83. [83]

      Foresti M L, Vázquez A, Boury B. Carbohydr Polym, 2017, 157: 447 − 467  doi: 10.1016/j.carbpol.2016.09.008

    84. [84]

      Wu Z Y, Liang H W, Chen L F, Hu B C, Yu S H. Acc Chem Res, 2016, 49(1): 96 − 105  doi: 10.1021/acs.accounts.5b00380

    85. [85]

      Chen Z, Hu Y, Zhuo H, Liu L, Jing S, Zhong L, Peng X, Sun R C. Chem Mater, 2019, 31: 3301 − 3312  doi: 10.1021/acs.chemmater.9b00259

    86. [86]

      Wang S, Jiang F, Xu X, Kuang Y, Fu K, Hitz E, Hu L. Adv Mater, 2017, 29(35): 1702498  doi: 10.1002/adma.201702498

    87. [87]

      Liang H W, Wu Z Y, Chen L F, Li C, Yu S H. Nano Energy, 2015, 11: 366 − 376  doi: 10.1016/j.nanoen.2014.11.008

    88. [88]

      Guan Q F, Han Z M, Luo T T, Yang H B, Liang H W, Chen S M, Wang G S, Yu S H J N S R. Natl Sci Rev, 2019, 6(1): 64 − 73  doi: 10.1093/nsr/nwy144

    89. [89]

      Yang J, Wang L, Zhang W, Sun Z, Li Y, Yang M, Zeng D, Peng B, Zheng W, Jiang X, Yang G. Small, 2018, 14(7): 1702582  doi: 10.1002/smll.201702582

    90. [90]

      Geisel N, Clasohm J, Shi X, Lamboni L, Yang J, Mattern K, Yang G, Schäfer K H, Saumer M. Small, 2016, 12(39): 5407 − 5413

    91. [91]

      Schaffner M, Rühs P A, Coulter F, Kilcher S, Studart A. Sci Adv, 2017, 3: 6804  doi: 10.1126/sciadv.aao6804

    92. [92]

      Yang J, Du M, Wang L, Li S, Wang G, Yang X, Zhang L, Fang Y, Zheng W, Yang G, Jiang X. ACS Appl Mater Interfaces, 2018, 10(39): 33049 − 33059  doi: 10.1021/acsami.8b12083

    93. [93]

      Shi Z, Gao X, Ullah M W, Li S, Wang Q, Yang G. Biomaterials, 2016, 111: 40 − 54  doi: 10.1016/j.biomaterials.2016.09.020

    94. [94]

      Li S, Huang D, Zhang B, Xu X, Wang M, Yang G, Shen Y. Adv Energy Mater, 2014, 4(10): 1301655  doi: 10.1002/aenm.201301655

    95. [95]

      Li S, Huang D, Yang J, Zhang B, Zhang X, Yang G, Wang M, Shen Y. Nano Energy, 2014, 9: 309 − 317  doi: 10.1016/j.nanoen.2014.08.004

    96. [96]

      Li Y, Tian Y, Zheng W, Feng Y, Huang R, Shao J, Tang R, Wang P, Jia Y, Zhang J, Zheng W, Yang G, Jiang X. Small, 2017, 13(27): 1700130  doi: 10.1002/smll.201700130

    97. [97]

      Zhang B, Zhou J, Li S, Zhang X, Huang D, He Y, Wang M, Yang G, Shen Y. Talanta, 2015, 131: 243 − 248  doi: 10.1016/j.talanta.2014.07.027

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    3. [3]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    4. [4]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    7. [7]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    8. [8]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    9. [9]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    10. [10]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    11. [11]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    12. [12]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    13. [13]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    16. [16]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    17. [17]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    18. [18]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

Metrics
  • PDF Downloads(0)
  • Abstract views(4117)
  • HTML views(739)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return