Citation: Hu-jun Qian, Zhong-yuan Lu. Interface Properties in Polymer/Single-chain Nanoparticle Composite[J]. Acta Polymerica Sinica, ;2020, 51(1): 55-65. doi: 10.11777/j.issn1000-3304.2020.19152 shu

Interface Properties in Polymer/Single-chain Nanoparticle Composite

  • It is a practical method to control the property of polymer material by incorporating nanoparticles. Recently polymer/nanoparticle composites have drawn increasing attention in the polymer field. Although researchers have made apparent progresses in the property regulation of polymeric materials by incorporating nanoparticles, progress in the development of the corresponding theory is, however, greatly inhibited, due to the lack of proper characterization approach, especially on the interaction mechanism between various nanoparticles and matrix polymers mainly at their interface area. This mini review summarizes recent simulation results of our research group, especially on a polymer/nanoparticle composite system where nanoparticles are single-chain crosslinked polymer nanoparticles with the same chemical composition as matrix polymers. In particular, after a thorough discussion of the structure and dynamic properties at nanoparticle/polymer interface region, it is clear that the interface in this system, where nanoparticle and matrix polymer interact effectively, has approximately the same size as nanoparticle itself. This interface size has no dependence of matrix polymer chain length. We hope that this conclusion can be helpful for the further development of relevant theory for polymer/nanocomposite systems.
  • 加载中
    1. [1]

      Giannelis E P, Krishnamoorti R, Manias E. Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. In: Granick S, eds. Polymers in Confined Environments. Advances in Polymer Science, Vol 138. Berlin, Heidelberg: Springer, 1999. 107 − 147

    2. [2]

      Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O. J Mater Res, 1993, 8(5): 1185 − 1189  doi: 10.1557/JMR.1993.1185

    3. [3]

      Tsagaropoulos G, Eisenberg A. Macromolecules, 1995, 28(18): 6067 − 6077  doi: 10.1021/ma00122a011

    4. [4]

      Lee A, Lichtenhan J D. Macromolecules, 1998, 31(15): 4970 − 4974  doi: 10.1021/ma9800764

    5. [5]

      Zheng L, Farris R J, Coughlin E B. Macromolecules, 2001, 34(23): 8034 − 8039  doi: 10.1021/ma0110094

    6. [6]

      Galgali G, Ramesh C, Lele A. Macromolecules, 2001, 34(4): 852 − 858  doi: 10.1021/ma000565f

    7. [7]

      Sternstein S S, Zhu A J. Macromolecules, 2002, 35(19): 7262 − 7273  doi: 10.1021/ma020482u

    8. [8]

      Schaefer D W, Justice R S. Macromolecules, 2007, 40(24): 8501 − 8517  doi: 10.1021/ma070356w

    9. [9]

      Favier V, Chanzy H, Cavaille J Y. Macromolecules, 1995, 28(18): 6365 − 6367  doi: 10.1021/ma00122a053

    10. [10]

      Vaia R A, Giannelis E P. Macromolecules, 1997, 30(25): 7990 − 7999  doi: 10.1021/ma9514333

    11. [11]

      Vaia R A, Giannelis E P. Macromolecules, 1997, 30(25): 8000 − 8009  doi: 10.1021/ma9603488

    12. [12]

      Krishnamoorti R, Giannelis E P. Macromolecules, 1997, 30(14): 4097 − 4102  doi: 10.1021/ma960550a

    13. [13]

      Balazs A C, Singh C, Zhulina E. Macromolecules, 1998, 31(23): 8370 − 8381  doi: 10.1021/ma980727w

    14. [14]

      Ren J X, Silva A S, Krishnamoorti R. Macromolecules, 2000, 33(10): 3739 − 3746  doi: 10.1021/ma992091u

    15. [15]

      Solomon M J, Almusallam A S, Seefeldt K F, Somwangthanaroj A, Varadan P. Macromolecules, 2001, 34(6): 1864 − 1872  doi: 10.1021/ma001122e

    16. [16]

      Bharadwaj R K. Macromolecules, 2001, 34(26): 9189 − 9192  doi: 10.1021/ma010780b

    17. [17]

      Ray S S, Maiti P, Okamoto M, Yamada K, Ueda K. Macromolecules, 2002, 35(8): 3104 − 3110  doi: 10.1021/ma011613e

    18. [18]

      Ray S S, Okamoto K, Okamoto M. Macromolecules, 2003, 36(7): 2355 − 2367  doi: 10.1021/ma021728y

    19. [19]

      Lin Y, Zhou B, Fernando K A S, Liu P, Allard L F, Sun Y P. Macromolecules, 2003, 36(19): 7199 − 7204  doi: 10.1021/ma0348876

    20. [20]

      Liu T X, Phang I Y, Shen L, Chow S Y, Zhang W D. Macromolecules, 2004, 37(19): 7214 − 7222  doi: 10.1021/ma049132t

    21. [21]

      Du F M, Scogna R C, Zhou W, Brand S, Fischer J E, Winey K I. Macromolecules, 2004, 37(24): 9048 − 9055  doi: 10.1021/ma049164g

    22. [22]

      Zhao X, Zhang Q H, Chen D J, Lu P. Macromolecules, 2010, 43(5): 2357 − 2363  doi: 10.1021/ma902862u

    23. [23]

      Kim H, Abdala A A, Macosko C W. Macromolecules, 2010, 43(16): 6515 − 6530  doi: 10.1021/ma100572e

    24. [24]

      Moniruzzaman M, Winey K I. Macromolecules, 2006, 39(16): 5194 − 5205  doi: 10.1021/ma060733p

    25. [25]

      LeBaron P C, Wang Z, Pinnavaia T J. Appl Clay Sci, 1999, 15(1): 11 − 29

    26. [26]

      Alexandre M, Dubois P. Mater Sci Eng, R, 2000, 28(1): 1 − 63

    27. [27]

      Ray S S, Okamoto M. Prog Polym Sci, 2003, 28(11): 1539 − 1641  doi: 10.1016/j.progpolymsci.2003.08.002

    28. [28]

      Winey K I, Vaia R A. MRS Bull, 2007, 32(4): 314 − 319  doi: 10.1557/mrs2007.229

    29. [29]

      Krishnamoorti R, Vaia R A. J Polym Sci, Part B: Polym Phys, 2007, 45(24): 3252 − 3256  doi: 10.1002/polb.21319

    30. [30]

      Tchoul M N, Fillery S P, Koerner H, Drummy L F, Oyerokun F T, Mirau P A, Durstock M F, Richard A V. Chem Mater, 2010, 22(5): 1749 − 1759  doi: 10.1021/cm903182n

    31. [31]

      Tang Zhenghai(唐征海), Guo Baochun(郭宝春), Zhang Liqun(张立群), Jia Demin(贾德民). Acta Polymerica Sinica(高分子学报), 2014, (7): 865 − 877  doi: 10.11777/j.issn1000-3304.2014.14084

    32. [32]

      You Feng(游峰), Wang Dongrui(王东瑞). Acta Polymerica Sinica(高分子学报), 2014, (7): 878 − 884  doi: 10.11777/j.issn1000-3304.2014.13395

    33. [33]

      Miziolek A W, Mauro J M, Vaia R A, Karna S P. Defense Applications of Nanomaterials. Washington DC: American Chemical Society, 2005. 82 − 101

    34. [34]

      Mittal V. Polymer Nanotubes Nanocomposites: Synthesis, Properties and Applications, 2nd ed. Beverly: Scrivener Publishing, 2014. 1 − 460

    35. [35]

      Maillard D, Kumar S K, Fragneaud B, Kysar J W, Rungta A, Benicewicz B C, Deng H, Brinson L C, Douglas J F. Nano Lett, 2012, 12(8): 3909 − 3914  doi: 10.1021/nl301792g

    36. [36]

      Guzeyev V, Rafikov M, Malinskii Y. Polym Sci USSR, 1975, 17(4): 923 − 926  doi: 10.1016/0032-3950(75)90263-4

    37. [37]

      Tuteja A, Duxbury P M, Mackay M E. Macromolecules, 2007, 40(26): 9427 − 9434  doi: 10.1021/ma071313i

    38. [38]

      Tan H, Lin Y, Zheng J, Gong J, Qiu J, Xing H, Tang T. Soft Matter, 2015, 11(20): 3986 − 3993  doi: 10.1039/C5SM00244C

    39. [39]

      Schmidt R G, Gordon G V, Dreiss C A, Cosgrove T, Krukonis V J, Williams K, Wetmore P M. Macromolecules, 2010, 43(23): 10143 − 10151  doi: 10.1021/ma1004919

    40. [40]

      Tan H, Xu D, Wan D, Wang Y, Wang L, Zheng J, Liu F, Ma L, Tang T. Soft Matter, 2013, 9(27): 6282 − 6290  doi: 10.1039/c3sm00103b

    41. [41]

      Mangal R, Srivastava S, Archer L A. Nat Commun, 2015, 6: 7198  doi: 10.1038/ncomms8198

    42. [42]

      Kim D, Srivastava S, Narayanan S, Archer L A. Soft Matter, 2012, 8(42): 10813  doi: 10.1039/c2sm26325d

    43. [43]

      Goldansaz H, Goharpey F, Afshar-Taromi F, Kim I, Stadler F J, van Ruymbeke E, Karimkhani V. Macromolecules, 2015, 48(10): 3368  doi: 10.1021/acs.macromol.5b00390

    44. [44]

      Wyart F B, de Gennes P G. Eur Phys J E: Soft Matter Biol Phys, 2000, 1(1): 93 − 97  doi: 10.1007/s101890050011

    45. [45]

      Liu J, Cao D P, Zhang L Q. J Phys Chem C, 2008, 112(17): 6653 − 6661  doi: 10.1021/jp800474t

    46. [46]

      Kalathi J T, Yamamoto U, Schweizer K S, Grest G S, Kumar S K. Phys Rev Lett, 2014, 112: 108301  doi: 10.1103/PhysRevLett.112.108301

    47. [47]

      Chen T, Qian H J, Lu Z Y. J Chem Phys, 2016, 145(10): 106101  doi: 10.1063/1.4962370

    48. [48]

      Cai L H, Panyukov S, Rubinstein M. Macromolecules, 2011, 44: 7853 − 7863  doi: 10.1021/ma201583q

    49. [49]

      Cai L H, Panyukov S, Rubinstein M. Macromolecules, 2015, 48: 847 − 862  doi: 10.1021/ma501608x

    50. [50]

      Yamamoto U, Carrillo J Y, Bocharova V, Sokolov A P, Sumpter B G, Schweizer K S. Macromolecules, 2018, 51(6): 2258 − 2267  doi: 10.1021/acs.macromol.7b02694

    51. [51]

      Griffin P J, Bocharova V, Middleton L R, Composto R J, Clarke N, Schweizer K S, Winey K I. Macromolecules, 2016, 5(10): 1141 − 1145

    52. [52]

      Carroll B, Bocharova V, Carrillo J Y, Kisliuk A, Cheng S, Yamamoto U, Schweizer K S, Sumpter B G, Sokolov A P. Macromolecules, 2018, 51(6): 2268 − 2275  doi: 10.1021/acs.macromol.7b02695

    53. [53]

      Bailey E J, Griffin P J, Composto R J, Winey K I. Macromolecules, 2019, 52(5): 2181 − 2188  doi: 10.1021/acs.macromol.8b02646

    54. [54]

      Cheng S, Xie S, Carrillo J Y, Carroll B, Martin H, Cao P F, Dadmun M D, Sumpter B G, Novikov V N, Schweizer K S, Sokolov A P. ACS Nano, 2017, 11(1): 752 − 759  doi: 10.1021/acsnano.6b07172

    55. [55]

      Cheng S, Bocharova V, Belianinov A, Xiong S, Kisliuk A, Somnath S, Holt A P, Ovchinnikova O S, Jesse S, Martin H, Etampawala T, Dadmun M, Sokolov A P. Nano Lett, 2016, 16(6): 3630 − 3637  doi: 10.1021/acs.nanolett.6b00766

    56. [56]

      Carroll B, Cheng S, Sokolov A P. Macromolecules, 2017, 50(16): 6149 − 6163  doi: 10.1021/acs.macromol.7b00825

    57. [57]

      Cheng S, Carroll B, Lu W, Fan F, Carrillo J M Y, Martin H, Holt A P, Kang N G, Bocharova V, Mays J W, Sumpter B G, Dadmun M, Sokolov A P. Macromolecules, 2017, 50(6): 2379 − 2406

    58. [58]

      Cheng S, Carroll B, Bocharova V, Carrillo J M Y, Sumpter B G, Sokolov A P. J. Chem Phys, 2017, 146(20): 203201  doi: 10.1063/1.4978504

    59. [59]

      Ndoro T V M, Böhm M C, Müller-Plathe F. Macromolecules, 2012, 45(1): 171 − 179  doi: 10.1021/ma2020613

    60. [60]

      Ndoro T V M, Voyiatzis E, Ghanbari A, Theodorou D N, Böhm M C, Müller-Plathe F. Macromolecules, 2011, 44(7): 2316 − 2327  doi: 10.1021/ma102833u

    61. [61]

      Ghanbari A, Ndoro T V M, Leroy F, Rahimi M, Böhm M C, Müller-Plathe F. Macromolecules, 2012, 45(1): 572 − 584  doi: 10.1021/ma202044e

    62. [62]

      Eslami H, Rahimi M, Müller-Plathe F. Macromolecules, 2013, 46(21): 8680 − 8692  doi: 10.1021/ma401443v

    63. [63]

      Eslami H, Müller-Plathe F. J Phys Chem C, 2013, 117(10): 5249 − 5257  doi: 10.1021/jp400142h

    64. [64]

      Mackay M E, Dao T T, Tuteja A, Ho D L, van Horn B, Kim H C, Hawker C J. Nat Mater, 2003, 2(11): 762 − 766  doi: 10.1038/nmat999

    65. [65]

      Tuteja A, Mackay M E, Hawker C J, van Horn B. Macromolecules, 2005, 39(19): 8000 − 8011

    66. [66]

      Chen T, Qian H J, Lu Z Y. Macromolecules, 2015, 48(8): 2751 − 2760  doi: 10.1021/ma502383n

    67. [67]

      Chen T, Qian H J, Lu Z Y. Chem Phys Lett, 2017, 687: 96 − 100  doi: 10.1016/j.cplett.2017.09.010

    68. [68]

      Jia X M, Shi R, Jiao G S, Chen T, Qian H J, Lu Z Y. Macromol Chem Phys, 2017, 218(16): 1700029  doi: 10.1002/macp.201700029

    69. [69]

      Tuteja A, Duxbury P M, Mackay M E. Phys Rev Lett, 2008, 100: 077801  doi: 10.1103/PhysRevLett.100.077801

    70. [70]

      Gong S, Chen Q, Moll J F, Kumar S K, Colby R H. ACS Macro Lett, 2014, 3(8): 773 − 777  doi: 10.1021/mz500252f

    71. [71]

      Cheng S, Carroll B, Lu W, Fan F, Carrillo J M Y, Martin H, Holt A P, Kang N G, Bocharova V, Mays J W, Sumpter B G, Dadmun M, Sokolov A P. Macromolecules, 2017, 50(6): 2397 − 2406  doi: 10.1021/acs.macromol.6b02816

    72. [72]

      Jimenez A M, Zhao D, Misquitta K, Jestin J, Kumar S K. ACS Macro Lett, 2019, 8(2): 166 − 171  doi: 10.1021/acsmacrolett.8b00877

  • 加载中
    1. [1]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    2. [2]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    3. [3]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    4. [4]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    5. [5]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    8. [8]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    9. [9]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    10. [10]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    11. [11]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

    12. [12]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012

    13. [13]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    14. [14]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    15. [15]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

    16. [16]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    18. [18]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    19. [19]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    20. [20]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

Metrics
  • PDF Downloads(0)
  • Abstract views(3369)
  • HTML views(485)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return