Citation: Dong-mei Cui. Studies on Homo- and Co-polymerizations of Polar and Non-polar Monomers Using Rare-earth Metal Catalysts[J]. Acta Polymerica Sinica, ;2020, 51(1): 12-29. doi: 10.11777/j.issn1000-3304.2020.19142 shu

Studies on Homo- and Co-polymerizations of Polar and Non-polar Monomers Using Rare-earth Metal Catalysts

  • Corresponding author: Dong-mei Cui, dmcui@ciac.ac.cn
  • Received Date: 31 July 2019
    Revised Date: 28 August 2019
    Available Online: 23 October 2019

  • The homo- and co-polymerizations of polar and non-polar monomers, since they can remain the stereo-regularity of the non-polyolefin precursors and meanwhile introduce polar groups into the non-polar polyolefins to improve their surface properties or bring unpredicted new functionalities, have attracted great attention of both academia and industries. However, polar groups are Lewis-basic while the catalysts employed in the polymerizations are usually Lewis acidic, which are prone to interact with the catalytic metal center to poison the catalysts, thus the study on homo- and co-polymerizations has been a challenging project. To date, many achievements have been obtained, and the following research should focus on realizing the homopolymerizations of polar monomers, increasing the activity and insertion ratio of the polar monomer in the copolymers, regulating the polar monomer composition and distribution along the copolymer macromolecular chains and isolating high molecular weight and practically available products. In this review, we summarized the recent developments of our group on the homo- and co-polymerizations of polar monomers, in particular polar styrenes and conjugated dienes with styrene, ethylene, butadien, isoprene and other popular nonpolar olefins, aiming to provide the readers novel strategies for designing new catalysts and polar monomers, as well as the unprecedented mechanisms.
  • 加载中
    1. [1]

      Zhang Yongjie(张勇杰), Li Huayi(李化毅), Dong Jinyong(董金勇), Hu Youliang(胡友良). Chemistry Advances(化学进展), 2014, 26: 110

    2. [2]

      Qiao Jinliang(乔金樑). Chemical Engineering of Petroleum(石油化工), 2015, 44: 1033  doi: 10.3969/j.issn.1000-8144.2015.09.001

    3. [3]

      Ouchi M, Terashima T, Sawamoto M. Chem Rev, 2009, 109(11): 4963 − 5050  doi: 10.1021/cr900234b

    4. [4]

      Matyjaszewski K, Xia J. Chem Rev, 2001, 101(9): 2921 − 2990  doi: 10.1021/cr940534g

    5. [5]

      Baughman T, Chan C, Winey K, Wagener K. Macromolecules, 2007, 40(18): 6564 − 6571  doi: 10.1021/ma070841r

    6. [6]

      Mutlu H, de Espinosa L, Meier M. Chem Soc Rev, 2011, 40(3): 1404 − 1445  doi: 10.1039/B924852H

    7. [7]

      Opper K, Wagener K. J Polym Sci, Part A: Polym Chem, 2011, 49(3): 821 − 831

    8. [8]

      Franssen N, Bas de Bruin R. Chem Soc Rev, 2013, 42(13): 5809 − 5832  doi: 10.1039/c3cs60032g

    9. [9]

      Nakamura A, Anselment T, Claverie J, Goodall B, Jordan R, Mecking S, Rieger B, Sen A, van Leeuwen P, Nozaki K. Chem Res, 2013, 46(7): 1438 − 1449  doi: 10.1021/ar300256h

    10. [10]

      Chen E. Chem Rev, 2009, 109(11): 5157 − 5214  doi: 10.1021/cr9000258

    11. [11]

      Yang X, Liu C, Wang C, Sun X, Guo Y, Wang X, Wang Z, Xie Z, Tang Y. Angew Chem Int Ed, 2009, 48(43): 8099 − 8102  doi: 10.1002/anie.200903334

    12. [12]

      Chen Z, Li J, Tao W, Sun X, Yang X, Tang Y. Macromolecules, 2013, 46(7): 2870 − 2875  doi: 10.1021/ma400283p

    13. [13]

      Aaltonen P, Lofgren B. Macromolecules, 1995, 28(15): 5353 − 5357  doi: 10.1021/ma00119a027

    14. [14]

      Aaltonen P, Fink G, Lofgren B, Seppala J. Macromolecules, 1996, 29(16): 5255 − 5260  doi: 10.1021/ma951607g

    15. [15]

      Imuta J, Kashiwa N, Toda Y. J Am Chem Soc, 2002, 124(7): 1176 − 1177  doi: 10.1021/ja0174377

    16. [16]

      Terao H, Ishii S, Mitani M, Tanaka H, Fujita T. Am Chem Soc, 2008, 130(52): 17636 − 17637  doi: 10.1021/ja8060479

    17. [17]

      Stehling U, Stein K, Kesti M, Waymouth R. Macromolecules, 1998, 31(7): 2019 − 2027  doi: 10.1021/ma971053c

    18. [18]

      Wang X, Wang Y, Shi X, Liu J, Chen C, Li Y. Macromolecules, 2014, 47(2): 552 − 559  doi: 10.1021/ma4022696

    19. [19]

      Zhang Y, Mu H, Pan L, Wang X, Li Y. ACS Catal, 2018, 8(7): 5963 − 5976  doi: 10.1021/acscatal.8b01088

    20. [20]

      Kesti M, Coates G, Waymouth R. Chem Soc, 1992, 114(24): 9679 − 9680  doi: 10.1021/ja00050a069

    21. [21]

      Xu G, Chung T. Macromolecules, 2000, 33(16): 5803 − 5809  doi: 10.1021/ma000303d

    22. [22]

      Kim K, Jo W, Kwak S, Kim K, Hwang S, Kim J. Macromolecules, 1999, 32(26): 8703 − 8710  doi: 10.1021/ma991036i

    23. [23]

      Ittel S, Johnson L, Brookhart M. Chem Rev, 2000, 100(4): 1169 − 1204  doi: 10.1021/cr9804644

    24. [24]

      Nakamura A, Ito S, Nozaki K. Chem Rev, 2009, 109(11): 5215 − 5244  doi: 10.1021/cr900079r

    25. [25]

      Johnson L, Killian C, Brookhart M. J Am Chem Soc, 1995, 117(23): 6414 − 6415  doi: 10.1021/ja00128a054

    26. [26]

      Johnson L, Mecking S, Brookhart M. J Am Chem Soc, 1996, 118(1): 267 − 268  doi: 10.1021/ja953247i

    27. [27]

      Mecking S, Johnson L, Wang L, Brookhart M. J Am Chem Soc, 1998, 120(5): 888 − 899  doi: 10.1021/ja964144i

    28. [28]

      Dai S, Sui X, Chen C. Angew Chem Int Ed, 2015, 54(34): 9948 − 9953  doi: 10.1002/anie.201503708

    29. [29]

      Dai S, Sui X, Chen C. Chem Commun, 2016, 52: 9113 − 9116  doi: 10.1039/C6CC00457A

    30. [30]

      Dai S, Chen C. Angew Chem Int Ed, 2016, 55(42): 13281 − 13285  doi: 10.1002/anie.201607152

    31. [31]

      Zhang D, Chen C. Angew Chem Int Ed, 2017, 56(46): 14672 − 14676  doi: 10.1002/anie.201708212

    32. [32]

      Li M, Wang X, Luo Y, Chen C. Angew Chem Int Ed, 2017, 56(38): 11604 − 11609  doi: 10.1002/anie.201706249

    33. [33]

      Chen M, Chen C. Angew Chem Int Ed, 2018, 57(12): 3094 − 3098  doi: 10.1002/anie.201711753

    34. [34]

      Chen Min(陈敏), Chen Changle(陈昶乐). Acta Polymerica Sinica(高分子学报), 2018, (11): 1372 − 1384  doi: 10.11777/j.issn1000-3304.2018.18155

    35. [35]

      Tan C, Chen C. Angew Chem Int Ed, 2019, 58(22): 7192 − 7200  doi: 10.1002/anie.201814634

    36. [36]

      Wang F, Chen C. Polym Chem, 2019, 10(19): 2354 − 2369  doi: 10.1039/C9PY00226J

    37. [37]

      Weng W, Shen Z, Jordan R. J Am Chem Soc, 2007, 129(50): 15450 − 15451  doi: 10.1021/ja0774717

    38. [38]

      Luo S, Vela J, Lief G, Jordan R. J Am Chem Soc, 2007, 129(29): 8946 − 8947  doi: 10.1021/ja072562p

    39. [39]

      Chen C, Luo S, Jordan R. J Am Chem Soc, 2008, 130(39): 12892 − 12893  doi: 10.1021/ja8056858

    40. [40]

      Diamanti S, Ghosh P, Shimizu F, Bazan G. Macromolecules, 2003, 36(26): 9731 − 9735  doi: 10.1021/ma035102z

    41. [41]

      Diamanti S, Khanna V, Hotta A, Yamakawa D, Shimizu F, Kramer E, Fredrickson G, Bazan G. J Am Chem Soc, 2004, 126(34): 10528 − 10529  doi: 10.1021/ja047231g

    42. [42]

      Schneider Y, Azoulay J, Coffin R, Bazan G. J Am Chem Soc, 2008, 130(32): 10464 − 10465  doi: 10.1021/ja803006d

    43. [43]

      Coffin R, Schneider Y, Kramer E, Bazan G. J Am Chem Soc, 2010, 132(39): 13869 − 13878  doi: 10.1021/ja1056938

    44. [44]

      Younkin T, Conner E, Henderson J, Friedrich S, Grubbs R, Bansleben D. Science, 2000, 287(462): 460 − 462

    45. [45]

      Connor E, Younkin T, Henderson J, Hwanf S, Grubbs R, Roberts W, Litzau J. J Polym Sci, Part A: Polym Chem, 2002, 40(16): 2842 − 2854  doi: 10.1002/pola.10370

    46. [46]

      Waltman A, Younkin T, Grubbs R. Organometallics, 2004, 23(22): 5121 − 5123  doi: 10.1021/om049360b

    47. [47]

      Carrow B, Nozaki K. J Am Chem Soc, 2012, 134(21): 8802 − 8805  doi: 10.1021/ja303507t

    48. [48]

      Sakai N, Nozaki K, Takaya H. J Am Chem Soc, 1994, 116(4): 395 − 396

    49. [49]

      Konishi Y, Tao W, Yasuda H, Ito S, Oishi Y, Ohtaki H, Tanna A, Tayano T, Nozaki K. ACS Macro Lett, 2018, 7(2): 213 − 217  doi: 10.1021/acsmacrolett.7b00904

    50. [50]

      Ota Y, Ito S, Kobayashi M, Kitade S, Sakata K, Tayano T, Nozaki K. Angew Chem Int Ed, 2016, 55(26): 7505 − 7509  doi: 10.1002/anie.201600819

    51. [51]

      Kawakami T, Ito S, Nozaki K. Dalton T, 2015, 44(47): 20745 − 20752  doi: 10.1039/C5DT03551A

    52. [52]

      Drent E, van Dijk R, van Ginkel R, van Oort B, Pugh R. Chem Commun, 2002, (7): 744 − 745  doi: 10.1039/b111252j

    53. [53]

      Skupov K, Marella P, Simard M, Yap G, Allen N, Conner D, Goodall B, Claverie J. Macromol Rapid Commun, 2007, 28(20): 2033 − 2038  doi: 10.1002/marc.200700370

    54. [54]

      Nakano R, Nozaki K. J Am Chem Soc, 2015, 137(28): 10934 − 10942

    55. [55]

      Ito S, Kanazawa M, Munakata K, Kuroda J, Okumura Y, Nozaki K. J Am Chem Soc, 2011, 133(5): 1232 − 1235  doi: 10.1021/ja1092216

    56. [56]

      Ito S, Munakata K, Nakamura A, Nozaki K. J Am Chem Soc, 2009, 131(41): 14606 − 14607  doi: 10.1021/ja9050839

    57. [57]

      Kochi T, Noda S, Yoshimura K, Nozaki K. J Am Chem Soc, 2007, 129(29): 8948 − 8949  doi: 10.1021/ja0725504

    58. [58]

      Masusa Y, Hasegawa M, Yamashita M, Nozaki K, Ishida N, Murakami M. J Am Chem Soc, 2013, 135(19): 7142 − 7145  doi: 10.1021/ja403461f

    59. [59]

      Ota Y, Ito S, Kuroda J, Okumura Y, Nozaki K. J Am Chem Soc, 2014, 136(34): 11898 − 11901  doi: 10.1021/ja505558e

    60. [60]

      Berkefeld A, Mecking S. Angew Chem Int Ed, 2008, 47(14): 2538 − 2542  doi: 10.1002/anie.200704642

    61. [61]

      Guironnet D, Roesle P, Runzi T, Göttker-Schnetmann I, Mecking S. J Am Chem Soc, 2009, 131(2): 422 − 423  doi: 10.1021/ja808017n

    62. [62]

      Guironnet D, Caporaso L, Neuwald B, Goöttker-Schnetmann I, Cavallo L, Mecking S. J Am Chem Soc, 2010, 132(12): 4418 − 4426  doi: 10.1021/ja910760n

    63. [63]

      Ruünzi T, Froöhlich D, Mecking S. J Am Chem Soc, 2010, 132(50): 17690 − 17691  doi: 10.1021/ja109194r

    64. [64]

      Friedberger T, Wucher P, Mecking S. J Am Chem Soc, 2012, 134(2): 1010 − 1018  doi: 10.1021/ja207110u

    65. [65]

      Jian Zhongbao(简忠保). Acta Polymerica Sinica(高分子学报), 2018, (11): 1359 − 1371  doi: 10.11777/j.issn1000-3304.2018.18146

    66. [66]

      Jian Z, Baier M, Mecking S. J Am Chem Soc, 2015, 137(8): 2836 − 2839  doi: 10.1021/jacs.5b00179

    67. [67]

      Jian Z, Mecking S. Angew Chem Int Ed, 2015, 54(52): 15845 − 15849  doi: 10.1002/anie.201508930

    68. [68]

      Jing Y, Sheares V. Macromolecules, 2000, 33(17): 6255 − 6261  doi: 10.1021/ma9918046

    69. [69]

      Jing Y, Sheares V. Macromolecules, 2000, 33(17): 6262 − 6268  doi: 10.1021/ma0002287

    70. [70]

      Yang Y, Lee J, Cho M, Sheares V. Macromolecules, 2006, 39(25): 8625 − 8631  doi: 10.1021/ma061249p

    71. [71]

      Beery M. Rath M, Sheares V Macromolecules, 2001, 34(8): 2469 − 2475  doi: 10.1021/ma001491a

    72. [72]

      Takenaka K, Hanada K, Shiomi T. Macromolecules, 1999, 32(12): 3875 − 3877  doi: 10.1021/ma981506t

    73. [73]

      Yaegashi T, Takeshita H, Takenaka K, Shiomi T. J Polym Sci Part A: Polym Chem, 2003, 41(10): 1545 − 1552  doi: 10.1002/pola.10675

    74. [74]

      Yaegashi T, Yodoya S, Nakamura M, Takeshita H, Takenaka K, Shiomi T. J Polym Sci, Part A: Polym Chem, 2004, 42(4): 999 − 1007  doi: 10.1002/pola.11051

    75. [75]

      Takenaka K, Hirao A, Hattori T, Nakahama S. Macromolecules, 1987, 20(8): 2034 − 2035  doi: 10.1021/ma00174a062

    76. [76]

      Takenaka K, Hirao A, Hattori T, Nakahama S. Macromolecules, 1989, 22: 1563 − 1567  doi: 10.1021/ma00194a010

    77. [77]

      Hirao A, Hiraishi Y, Nakahama S, Takenaka K. Macromolecules, 1998, 31(2): 281 − 287  doi: 10.1021/ma971214c

    78. [78]

      Natta G, Dall′Asta G, Mazzanti G, Casale A. Makromol Chem, 1962, 58(1): 217 − 225  doi: 10.1002/macp.1962.020580115

    79. [79]

      Kawamura T, Uryu T, Matsuzaki K. Makromol Chem, 1982, 183(1): 125 − 141  doi: 10.1002/macp.1982.021830111

    80. [80]

      Li D, Li S, Cui D, Zhang X. Organometallics, 2010, 29(9): 2186 − 2193  doi: 10.1021/om100100r

    81. [81]

      Liu D, Yao C, Wang R, Wang M, Wang Z, Wu C, Lin F, Li S, Wan X, Cui D. Angew Chem Int Ed, 2015, 54(17): 5205 − 5209  doi: 10.1002/anie.201412166

    82. [82]

      Chai Y, Wang L, Liu D, Wang Z, Run M, Cui D. Chem Eur J, 2019, 25(8): 2043 − 2050  doi: 10.1002/chem.201805012

    83. [83]

      Malanga M. Adv Mater, 2000, 12(23): 1869 − 1872  doi: 10.1002/1521-4095(200012)12:23<1869::AID-ADMA1869>3.0.CO;2-#

    84. [84]

      Shi X, Nishiura M, Hou Z. Angew Chem Int Ed, 2016, 55(47): 14812 − 14817  doi: 10.1002/anie.201609065

    85. [85]

      Liu D, Wang R, Wang M, Wu C, Wang Z, Yao C, Liu B, Wan X, Cui D. Chem Commun, 2015, 51(22): 4685 − 4688  doi: 10.1039/C5CC00470E

    86. [86]

      Liu D, Wang M, Chai Y, Wan X, Cui D. ACS Catal, 2019, 9(3): 2618 − 2625  doi: 10.1021/acscatal.9b00555

    87. [87]

      Wang Z, Liu D, Cui D. Macromolecules, 2016, 49(3): 781 − 787  doi: 10.1021/acs.macromol.5b02263

    88. [88]

      Lang X, Jia W, Wang Y, Zhu Z. Catal Commun, 2015, 70: 58 − 61  doi: 10.1016/j.catcom.2015.07.017

    89. [89]

      Ishihara N, Kuramoto M, Uoi M. Macromolecules, 1988, 21(12): 3356 − 3360  doi: 10.1021/ma00190a003

    90. [90]

      Wang Z, Wang M, Liu J, Liu D, Cui D. Chem Eur J, 2017, 23(72): 18151 − 18155  doi: 10.1002/chem.201704584

    91. [91]

      Soga K, Nakatani H, Monoi T. Macromolecules, 1990, 23(4): 953 − 957  doi: 10.1021/ma00206a009

    92. [92]

      Grassi A, Longo P, Proto A, Zambelli A. Macromolecules, 1989, 22(1): 104 − 108  doi: 10.1021/ma00191a021

    93. [93]

      Liu D, Wang M, Wang Z, Wu C, Pan Y, Cui D. Angew Chem Int Ed, 2017, 56(10): 2714 − 2719  doi: 10.1002/anie.201611066

    94. [94]

      Li S, Liu D, Wang Z, Cui D. ACS Catal, 2018, 8(7): 6086 − 6093  doi: 10.1021/acscatal.8b00885

    95. [95]

      Wang C, Luo G, Nishiura M, Song G, Yamamoto A, Luo Y, Hou Z. Sci Adv, 2017, 3(7): e1701011  doi: 10.1126/sciadv.1701011

    96. [96]

      Guo N, Stern C, Marks T. J Am Chem Soc, 2008, 130(7): 2246 − 2261  doi: 10.1021/ja076407m

    97. [97]

      Liu B, Qiao K, Fang J, Wang T, Wang Z, Liu D, Xie Z, Maron L, Cui D. Angew Chem Int Ed, 2018, 57(45): 14896 − 14901  doi: 10.1002/anie.201808836

    98. [98]

      Payne A. J Appl Polym Sci, 1962, 6(19): 57 − 63  doi: 10.1002/app.1962.070061906

    99. [99]

      Payne A. J Appl Polym Sci, 1962, 6(21): 368 − 372  doi: 10.1002/app.1962.070062115

    100. [100]

      Sheares V, Wu L, Li Y, Emmick T. J Polym Sci, Part A: Polym Chem, 2000, 38(22): 4070 − 4080  doi: 10.1002/1099-0518(20001115)38:22<4070::AID-POLA70>3.0.CO;2-P

    101. [101]

      Hirao A, Goseki R, Ishizone T. Macromolecules, 2014, 47(6): 1883 − 1905  doi: 10.1021/ma401175m

    102. [102]

      Wu L, Sheares V. J Polym Sci Part A: Polym Chem, 2001, 39(19): 3227 − 3238  doi: 10.1002/pola.1305

    103. [103]

      Yao C, Liu N, Long S, Wu C, Cui D. Polym Chem, 2016, 7(6): 1264 − 1270  doi: 10.1039/C5PY01801C

    104. [104]

      Leicht H, Göttker-Schnetmann I, Mecking S. ACS Macro Lett, 2016, 5(6): 777 − 780  doi: 10.1021/acsmacrolett.6b00321

    105. [105]

      Long S, Lin F, Yao C, Cui D. Macromol Rapid Commun, 2017, 38(17): 1700227  doi: 10.1002/marc.201700227

    106. [106]

      Li L, Li S, Cui D. Macromolecules, 2016, 49(4): 1242 − 1251  doi: 10.1021/acs.macromol.5b02654

    107. [107]

      Li L, Li S, Cui D. J Polym Sci, Part A: Polym Chem, 2017, 55(6): 1031 − 1039  doi: 10.1002/pola.28463

  • 加载中
    1. [1]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    2. [2]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    3. [3]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    6. [6]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    7. [7]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    8. [8]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    9. [9]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    10. [10]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    11. [11]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    12. [12]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    13. [13]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    14. [14]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    16. [16]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    17. [17]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

Metrics
  • PDF Downloads(0)
  • Abstract views(3281)
  • HTML views(339)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return