Citation: Hao Yin, Yan-zhe Song, Yun-feng Li, Meng-cheng Du, Jian-guang Pang, Xin-yan Shi. Study on Adhesion Mechanism of Resorcinol Formaldehyde Cobalt Salt Adhesive System in Tire Skeleton Materials[J]. Acta Polymerica Sinica, ;2020, 51(4): 411-420. doi: 10.11777/j.issn1000-3304.2019.19184 shu

Study on Adhesion Mechanism of Resorcinol Formaldehyde Cobalt Salt Adhesive System in Tire Skeleton Materials

  • Corresponding author: Xin-yan Shi, lindashi88@hotmail.com
  • Received Date: 17 October 2019
    Revised Date: 30 December 2019
    Available Online: 20 March 2020

Figures(14)

  • The strong adhesion between the rubber and the skeleton material determines the performance of the tire. Most of the damage such as puncture, fatigue, and delamination of the tire are caused by the failure of the adhesion between the rubber and the skeleton material. The adhesion of the material is directly related to the performance and life of the tire. In order to verify and further explore the mechanism of adhesion of the adhesive resin and cobalt salt to the tire and the copper-plated steel cord, the conventional adhesive resin R80 and two new adhesive resins HT1005 and H620 were selected to analyze the mechanism of adhesion through structural analysis, rubber vulcanization characteristics, T extraction test, a new adhesive layer strength test method and adhesive layer characterization method. The results show that the polar adhesive resin containing hydroxyl groups will be auto-phase-separated due to thermodynamic incompatibility with the polarity difference of non-polar natural rubber when vulcanized. The adhesive resin migrates to the interface layer between the rubber and the copper-plated steel wire, producing a resin-rich layer between the rubber and the copper-plated steel wire. Since the crosslinking temperature of the binder resin is about 140 °C, synchronous crosslinking reaction will occur in natural rubber vulcanization reaction. The network modulus of the binder resin is higher than that of the rubber vulcanization network, which will enhance the adhesion strength between the copper-plated steel wire and the rubber, and form a modulus transition layer between the copper-plated steel wire and the rubber. A modulus transition layer between the rubber and the rubber further enhances the adhesive layer.
  • 加载中
    1. [1]

      Das S, Koli P, Mathur J, Dey A, Bhattacharyya T, Bhattacharyya S. Failure Anal Prev, 2013, 13(6): 684 − 688  doi: 10.1007/s11668-013-9750-x

    2. [2]

      Daws J W. Practical Fail Anal, 2003, 3(5): 73 − 80  doi: 10.1007/BF02717489

    3. [3]

      Sarkar A. Saf Reliab, 2012, 32(2): 17 − 32

    4. [4]

      Ooij W J V. Surf Sci, 1977, 68: 1 − 9  doi: 10.1016/0039-6028(77)90184-4

    5. [5]

      Patil P Y, Ooij W J V. J Adhes Sci Technol, 2004, 18(12): 1367 − 1394  doi: 10.1163/1568561042323266

    6. [6]

      Abou-Kandil A I, Saleh B K, Darwish N A. Rev Adhes Adhes, 2013, 1(4): 365 − 396  doi: 10.7569/RAA.2013.097313

    7. [7]

      Abou-Kandil A I, Awad A, Darwish N, Shehata A B, Sale B K. Int J Adhes Adhes, 2013, 44(44): 26 − 35

    8. [8]

      Campion R P. Mater Sci Tech-lond, 1989, 5(3): 209 − 221  doi: 10.1179/mst.1989.5.3.209

    9. [9]

      Nah C, Sohn B Y, Park S J. J Adhes Sci Technol, 2002, 16(6): 653 − 667  doi: 10.1163/156856102760099861

    10. [10]

      Kasperovich A V, Krotova O A, Potapov E E, Reznichenko S V, Shkodich V F. Polym Sci Ser, 2016, 9(1): 68 − 71  doi: 10.1134/S1995421215040061

    11. [11]

      Jeon, S G. J Adhes Sci Technol, 2008, 22(12): 1223 − 1253  doi: 10.1163/156856108X319926

    12. [12]

      Jeon, S G. J Adhes Sci Technol, 2003, 17(6): 797 − 814  doi: 10.1163/156856103321645167

    13. [13]

      Jeon G S, Seo G. Korean J Chem Eng, 2003, 20(3): 496 − 502  doi: 10.1007/BF02705555

    14. [14]

      Patil P Y. Mechanistic Investigation of Rubber-brass Adhesion. Doctoral Dissertation of University of Cincinnati, 2005

    15. [15]

      Chandra A K, Biswas A, Mukhopadhyay R, Bhowmick A K. J Adhes, 1994, 44(3): 20 − 22

    16. [16]

      Sajith P, Ummer M T, Mandal N, Mandot S K, Agrawal S L, Bandyopadhyay S, Cruz B D, Deuri A S, Kuriakose A P. J Adhes Sci Technol, 2005, 19(16): 1475 − 1491  doi: 10.1163/156856105774805868

    17. [17]

      Pu Qijun(蒲启君), Li Huating(李花婷), Xu Chunhua(许春华), Wu Jinwei(吴锦伟), Xu Chuanda(徐川大),Shi Jinkuan(时金宽), Jiang Zhiping(江志平). China Rubber Industry(橡胶工业), 1996, (12): 716 − 722

    18. [18]

      Pu Qijun(蒲启君). China Rubber Industry(橡胶工业), 1999, (11): 683 − 695

    19. [19]

      Lin Xiangyang(林向阳), Guan Qingjun(管清军), Huang Yigang(黄义钢). China Rubber(中国橡胶), 2007, 23(3): 37 − 40  doi: 10.3969/j.issn.1009-5640.2007.03.013

    20. [20]

      Du Mengcheng(杜孟成), Li Yunfeng(李云峰), Yang Zhenlin(杨振林). Tire Industry(轮胎工业), 2014, 34(4): 225 − 228  doi: 10.3969/j.issn.1006-8171.2014.04.008

    21. [21]

      Zhou Shunxu(周顺旭), Liu Qian(刘谦), Shan Guoling(单国玲). Tire Industry(轮胎工业), 1997, (12): 722 − 725

    22. [22]

      Qian Honglian(钱红莲), Wang Pingyue(王平粤), Yang Chunliang(杨春亮). Special Purpose Rubber Products(特种橡胶制品), 2004, 25(3): 51 − 53  doi: 10.3969/j.issn.1005-4030.2004.03.017

  • 加载中
    1. [1]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    2. [2]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    3. [3]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    4. [4]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    5. [5]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    6. [6]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    9. [9]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    10. [10]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    11. [11]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    14. [14]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    17. [17]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    18. [18]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

Metrics
  • PDF Downloads(64)
  • Abstract views(4227)
  • HTML views(572)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return