Citation: Chun-yang Yu, Shan-long Li, Ke Li, Yong-feng Zhou. Investigation of the Transformation Dynamics of Diblock Copolymers Assemblies in Reverse Solvent via Computer Simulation[J]. Acta Polymerica Sinica, ;2020, 51(3): 311-318. doi: 10.11777/j.issn1000-3304.2019.19173 shu

Investigation of the Transformation Dynamics of Diblock Copolymers Assemblies in Reverse Solvent via Computer Simulation

  • It has become a very mature and effective method to construct complex nanostructures by the self-assembly of amphiphilic block copolymer in solution or in bulk. A large number of studies have been reported that the assembly morphology of amphiphilic block copolymer can be accurately controlled by adjusting the block ratio, concentration, block compatibility and solvent conditions. Meanwhile, compared with the solution self-assembly method, the combination of substrate restriction and solvent annealing provides another way for the construction and regulation of complex nanostructures. However, due to the limitations of experimental methods, two basic problems have not been resolved. The first one is that, after the solvent selectivity was changed, the structural transformation dynamics of micelle were not clear. The second one is that, the current studies are only limited to the structural transformation process of spherical micelles in different solvents, the structural evolution kinetics of other shaped micelles or vesicles in the reverse solvent or at interface have not been reported. Thus, it is necessary to address these issues through computer simulation. In this paper, the transformation dynamics of diblock copolymers assemblies in reverse selective solvent were disclosed using dissipative particle dynamics simulation. Simulation results show that after the change of solvent selectivity, the large spherical micelles were respectively transformed into the reverse spherical micelle in solution and the ring-like micelle at the interface. The simulation results were in agreement with the available experimental result. In addition, the simulation results also predicted that after the change of solvent selectivity, the ring-like micelle, the wormlike micelle and the vesicle were transformed into the reverse ring-like micelle, the reverse ring-like micelle and multimicelle aggregate in solution, respectively, while they were transformed into the branched wormlike micelle, the multilayer nanoparticle and the patch nanoparticle at the interface, respectively. The current work provide important guidance for the design and preparation of novel nanostructures.
  • 加载中
    1. [1]

      Mai Y Y, Eisenberg A. Chem Soc Rev, 2012, 41(18): 5969 − 5985  doi: 10.1039/c2cs35115c

    2. [2]

      Schacher F H, Brendel J C. Chem-Asian J, 2018, 13(3): 230 − 239  doi: 10.1002/asia.201701542

    3. [3]

      Feng H B, Lu X Y, Wang W Y, Kang N G, Mays J W. Polymers, 2017, 9(10): 494

    4. [4]

      Albert J N L, Epps III T H. Mater Today, 2010, 13(6): 24 − 33  doi: 10.1016/S1369-7021(10)70106-1

    5. [5]

      Zhang Xiaohong(张晓宏), Wu Shikang(吴世康), Huang Pengcheng(黄鹏程). Acta Polymerica Sinica(高分子学报), 1998, (3): 332 − 337

    6. [6]

      Thomas E L, Anderson D M, Henkee C S, Hoffman D. Nature, 1988, 334(6183): 598 − 601  doi: 10.1038/334598a0

    7. [7]

      Bates F S. Science, 1991, 251(4996): 898 − 905  doi: 10.1126/science.251.4996.898

    8. [8]

      Bates F S, Fredrickson G H. Phys Today, 1999, 52(40): 32 − 38

    9. [9]

      van Hest J C M, Delnoye D A P, Baars M W P L, van Genderen M H P, Meijer E W. Science, 1995, 268(5217): 1592 − 1595  doi: 10.1126/science.268.5217.1592

    10. [10]

      Zhang L, Eisenberg A. Science, 1995, 268(5218): 1728 − 1731  doi: 10.1126/science.268.5218.1728

    11. [11]

      Zhang L, Yu K, Eisenberg A. Science, 1996, 272(5269): 1777 − 1779  doi: 10.1126/science.272.5269.1777

    12. [12]

      Lin Z X, Liu S H, Mao W T, Tian H, Wang N, Zhang N H, Tian F, Han L, Feng X L, Mai Y Y. Angew Chem Int Ed, 2017, 56(25): 7135 − 7140  doi: 10.1002/anie.201702591

    13. [13]

      Riess G. Prog Polym Sci, 2003, 28(7): 1107 − 1170  doi: 10.1016/S0079-6700(03)00015-7

    14. [14]

      Rösler A, Vandermeulen G W, Klok H A. Adv Drug Deliv Rev, 2001, 53(1): 95 − 108  doi: 10.1016/S0169-409X(01)00222-8

    15. [15]

      O’Reilly R K, Hawker C J, Wooley K L. Chem Soc Rev, 2006, 35(11): 1068 − 1083  doi: 10.1039/b514858h

    16. [16]

      Wei H, Cheng S X, Zhang X Z, Zhuo R X. Prog Polym Sci, 2009, 34(9): 893 − 910  doi: 10.1016/j.progpolymsci.2009.05.002

    17. [17]

      Roy D, Brooks W L, Sumerlin B S. Chem Soc Rev, 2013, 42(17): 7214 − 7243  doi: 10.1039/c3cs35499g

    18. [18]

      Bates C M, Maher M J, Janes D W, Ellison C J, Willson C G. Macromolecules, 2013, 47(1): 2 − 12

    19. [19]

      Li W, Muller M. Annu Rev Chem Biomol, 2015, 6(1): 187 − 216  doi: 10.1146/annurev-chembioeng-061114-123209

    20. [20]

      Schulze M W, McIntosh L D, Hillmyer M A, Lodge T P. Nano Lett, 2013, 14(1): 122 − 126

    21. [21]

      Kennemur J G, Hillmyer M A, Bates F S. Macromolecules, 2012, 45(17): 7228 − 7236  doi: 10.1021/ma301047y

    22. [22]

      Keen I, Yu A, Cheng H H, Jack K S, Nicholson T M, Whittaker A K, Blakey I. Langmuir, 2012, 28(24): 15876 − 15888

    23. [23]

      Zhang Lianbin(张连斌), Wang Ke(王珂), Zhu Jintao(朱锦涛). Acta Polymerica Sinica(高分子学报), 2017, (8): 1261 − 1276  doi: 10.11777/j.issn1000-3304.2017.17126

    24. [24]

      O’Driscoll S M, O’Mahony C T, Farrell R A, Fitzgerald T G, Holmes J D, Morris M A. Chem Phys Lett, 2009, 476(1−3): 65 − 68

    25. [25]

      Chen Z, He C, Li F, Tong L, Liao X, Wang Y. Langmuir, 2010, 26(11): 8869 − 8874  doi: 10.1021/la904623e

    26. [26]

      Xue F, Li H, An L, Jiang S. J Colloid Interface Sci, 2013, 399(1): 62 − 67

    27. [27]

      Zhu H, Wang X, Cui Y, Cai J, Tian F, Wang J, Qiu H. Macromolecules, 2019, 52(9): 3479 − 3485  doi: 10.1021/acs.macromol.9b00197

    28. [28]

      Groot R D, Madden T J. J Chem Phys, 1998, 108(20): 8713 − 8724  doi: 10.1063/1.476300

    29. [29]

      Liu Y T, Zhao Y, Liu H, Liu Y H, Lu Z Y. J Phys Chem B, 2009, 113(46): 15256 − 15262  doi: 10.1021/jp903570w

    30. [30]

      Sheng Y J, Wang T Z, Chen W M, Tsao H K. J Phys Chem B, 2007, 111(37): 10938 − 10945  doi: 10.1021/jp073408s

    31. [31]

      Sheng Y J, Nung C H, Tsao H K. J Phys Chem B, 2006, 110(43): 21643 − 21650  doi: 10.1021/jp0642950

    32. [32]

      Chang H Y, Lin Y L, Sheng Y J, Tsao H K. Macromolecules, 2012, 45(11): 4778 − 4789  doi: 10.1021/ma3007366

    33. [33]

      Tan H N, Wang W, Yu C Y, Zhou Y F, Lu Z Y, Yan D Y. Soft Matter, 2015, 11(43): 8460 − 8470  doi: 10.1039/C5SM01495F

    34. [34]

      Tan H N, Yu C Y, Lu Z Y, Zhou Y F, Yan D Y. Soft Matter, 2017, 13(36): 6178 − 6188  doi: 10.1039/C7SM01170A

    35. [35]

      Wang Y L, Li B, Zhou Y F, Lu Z Y, Yan D Y. Soft Matter, 2013, 9(12): 3293 − 3304  doi: 10.1039/c3sm27396b

    36. [36]

      Yu C Y, Ma L, Li K, Li S L, Liu Y N, Liu L F, Zhou Y F, Yan D Y. Langmuir, 2016, 33(1): 388 − 399

    37. [37]

      Hoogerbrugge P J, Koelman J M V A. Europhys Lett, 1992, 19(3): 155 − 160  doi: 10.1209/0295-5075/19/3/001

    38. [38]

      Koelman J M V A, Hoogerbrugge P J. Europhys Lett, 1993, 21(3): 363 − 368  doi: 10.1209/0295-5075/21/3/018

    39. [39]

      Groot R D, Warren P B. J Chem Phys, 1997, 107(11): 4423 − 4435  doi: 10.1063/1.474784

    40. [40]

      Wang Z K, Wang H B, Cheng M, Li C L, Faller R, Sun S Q, Hu S Q. ACS Nano, 2018, 12(2): 1413 − 1419  doi: 10.1021/acsnano.7b07777

    41. [41]

      Zhu Y L, Liu H, Li Z W, Qian H J, Milano G, Lu Z Y. J Comput Chem, 2013, 34(25): 2197 − 2211  doi: 10.1002/jcc.23365

    42. [42]

      Han Y Y, Yu H Z, Du H B. J Am Chem Soc, 2010, 132(3): 1144 − 1150  doi: 10.1021/ja909379y

    43. [43]

      Jiang Y, Zhu J T, Jiang W. J Phys Chem B, 2005, 109(46): 21549 − 21555  doi: 10.1021/jp052420m

  • 加载中
    1. [1]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    6. [6]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    7. [7]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    8. [8]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    9. [9]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    10. [10]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    11. [11]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    12. [12]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    13. [13]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    14. [14]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    15. [15]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    16. [16]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    17. [17]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    18. [18]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    19. [19]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    20. [20]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

Metrics
  • PDF Downloads(0)
  • Abstract views(160)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return