Citation: Xi-xi Wang, Lu Dai, Su-yun Jie, Bo-geng Li. Synthesis of Carboxyl-terminated Polyolefins via Metathesis Degradation-hydrogenation of Diene Rubbers[J]. Acta Polymerica Sinica, ;2020, 51(3): 277-286. doi: 10.11777/j.issn1000-3304.2019.19171 shu

Synthesis of Carboxyl-terminated Polyolefins via Metathesis Degradation-hydrogenation of Diene Rubbers

  • Corresponding author: Su-yun Jie, jiesy@zju.edu.cn
  • Received Date: 18 September 2019
    Revised Date: 21 October 2019

  • The carboxyl-terminated polydiene is a kind of widely used telechelic liquid rubber, which is commonly used as adhesive for solid rocket propellant, material bonding, sealant, electric insulation or as modifier of epoxy resins. Taking diene rubbers as raw materials, the carboxyl-terminated polydienes were synthesized via olefin metathesis degradation of diene rubbers catalyzed by Grubbs II catalyst ( G2 ) in the presence of maleic acid as a chain transfer agent (CTA). The carboxyl-terminated polyolefins were further prepared by the subsequent chemical hydrogenation with p-toluenesulfonyl hydrazide/tri(n-propyl)amine reagents. The influences of reaction conditions on the molecular weight and molecular weight distribution of products, including reaction time, reaction temperature, molar ratios of C=C/catalyst and C=C/chain transfer agent, were investigated. The results indicated that the molecular weight of products could be controlled by varying the molar ratio of C=C/catalyst or C=C/chain transfer agent. It turned out that the catalyst was highly active for the metathesis degradation of diene rubbers even if there was no existence of chain transfer agents. The structures of carboxyl-terminated polydienes and polyolefins were characterized by nuclear magnetic resonance spectroscopy (1H-NMR) and carbon spectrum (13C-NMR), infrared spectroscopy (FTIR) and gel permeation chromatography (GPC) and their thermal properties were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). It’s worth noting that the trans-1,4 content of carboxyl-terminated polybutadiene via metathesis degradation greatly increased and the corresponding cis-1,4 content decreased, thus affecting the properties of polymers. After hydrogenation, the carboxyl-terminated polyolefins had better thermal stability than the carboxyl-terminated polydienes.
  • 加载中
    1. [1]

      Sturzel M, Mihan S, Mulhaupt R. Chem Rev, 2016, 116(3): 1398 − 1433  doi: 10.1021/acs.chemrev.5b00310

    2. [2]

      Kaminsky W. Macromol Chem Phys, 2008, 209(5): 459 − 466  doi: 10.1002/macp.200700575

    3. [3]

      Chen Jianzhuang(陈健壮), Cui Kun(崔崑), Zhang Shuyuan(张淑媛), Ma Zhi(马志). Progress in Chemistry(化学进展), 2008, 20(11): 1740 − 1750

    4. [4]

      Wang Huanxin(汪焕心). Guangzhou Chemical Industry(广州化工), 2012, 40(3): 1 − 3  doi: 10.3969/j.issn.1001-9677.2012.03.002

    5. [5]

      Jian Zhongbao(简忠保). Acta Polymerica Sinica(高分子学报), 2018, (11): 1359 − 1371  doi: 10.11777/j.issn1000-3304.2018.18146

    6. [6]

      Zou Tingting(邹婷婷), Jiang Bin(蒋斌), Lin Shaohui(林韶晖), Pan Qinmin(潘勤敏). Acta Polymerica Sinica(高分子学报), 2016, (10): 1374 − 1382

    7. [7]

      Smith R F, Boothroyd S C, Thompson R L, Khosravi E. Green Chem, 2016, 18(11): 3448 − 3455  doi: 10.1039/C5GC03075G

    8. [8]

      Michel X, Fouquay S, Michaud G, Simon F, Brusson J M, Carpentier J F, Guillaume S M. Eur Polym J, 2017, 96: 403 − 413  doi: 10.1016/j.eurpolymj.2017.09.027

    9. [9]

      Saetung N, Campistron I, Pascua S, Pilard J F, Fontaine L. Macromolecules, 2011, 44(4): 784 − 794  doi: 10.1021/ma102406w

    10. [10]

      Chen Min(陈敏), Chen Changle(陈昶乐). Acta Polymerica Sinica(高分子学报), 2018, (11): 1372 − 1384  doi: 10.11777/j.issn1000-3304.2018.18155

    11. [11]

      Dong J Y, Hu Y. Coord Chem Rev, 2006, 250(1-2): 47 − 65  doi: 10.1016/j.ccr.2005.05.008

    12. [12]

      Martinez H, Hillmyer M A. Macromolecules, 2014, 47(2): 479 − 485  doi: 10.1021/ma402397b

    13. [13]

      Xu Z, Jie S, Li B G. J Polym Sci, Part A: Polym Chem, 2014, 52(22): 3205 − 3212  doi: 10.1002/pola.27381

    14. [14]

      Trzaskowski J, Quinzler D, Bahrle C, Mecking S. Macromol Rapid Commun, 2011, 32(17): 1352 − 1356  doi: 10.1002/marc.201100319

    15. [15]

      Vilela C, Silvestre A J D, Meier M A R. Macromol Chem Phys, 2012, 213(21): 2220 − 2227  doi: 10.1002/macp.201200332

    16. [16]

      Stempfle F, Ortmann P, Mecking S. Chem Rev, 2016, 116(7): 4597 − 4641  doi: 10.1021/acs.chemrev.5b00705

    17. [17]

      Shiono T, Yoshida K, Soga K. Makromol Chem Rapid Commun, 1990, 11(4): 169 − 175  doi: 10.1002/marc.1990.030110405

    18. [18]

      Shiono T, Kurosawa H, Soga K. Makromol Chem, 1992, 193(11): 2751 − 2761  doi: 10.1002/macp.1992.021931104

    19. [19]

      Mazzolini J, Boyron O, Monteil V, Gigmes D, Bertin D, D Agosto F, Boisson C. Macromolecules, 2011, 44(9): 3381 − 3387  doi: 10.1021/ma200342y

    20. [20]

      Zhang Yongjie(张勇杰), Li Huayi(李化毅), Dong Jinyong(董金勇), Hu Youliang(胡友良). Progress in Chemistry(化学进展), 2014, 26(1): 110 − 124

    21. [21]

      Tasdelen M A, Kahveci M U, Yagci Y. Prog Polym Sci, 2011, 36(4): 455 − 567  doi: 10.1016/j.progpolymsci.2010.10.002

    22. [22]

      Berenbaum M B, Bulbenko G F, Gobran R H, Hoffman R F. US Patent, 3235589, 1966-02-15

    23. [23]

      Reed S F. J Polym Sci, Part A: Polym Chem, 1971, 9(8): 2147 − 2153  doi: 10.1002/pol.1971.150090804

    24. [24]

      Norsic S, Thomas C, D' Agosto F, Boisson C. Angew Chem Int Ed, 2015, 54(15): 4631 − 4635  doi: 10.1002/anie.201411223

    25. [25]

      Pitet L M, Hillmyer M A. Macromolecules, 2011, 44(7): 2378 − 2381  doi: 10.1021/ma102975r

    26. [26]

      Morita T, Maughon B R, Bielawski C W, Grubbs R H. Macromolecules, 2000, 33(17): 6621 − 6623  doi: 10.1021/ma000013x

    27. [27]

      Dai L, Wang X, Bu Z, Li B-G, Jie S. J Appl Polym Sci, 2019, 136(2): 46934  doi: 10.1002/app.46934

    28. [28]

      Esteruelas M A, Gonzalez F, Herrero J, Lucio P, Olivan M, Ruiz-Labrador B. Polym Bull, 2007, 58(5-6): 923 − 931  doi: 10.1007/s00289-007-0734-4

    29. [29]

      Lichtenheldt M, Wang D R, Vehlow K, Reinhardt I, Kuhnel C, Decker U, Blechert S, Buchmeiser M R. Chem Eur J, 2009, 15(37): 9451 − 9457  doi: 10.1002/chem.200900384

    30. [30]

      Grubbs R H. Handbook of Metathesis. Weinheim: Wiley-VCH, 2003. 1 − 6

    31. [31]

      Harwood H J, Russell D B, Verthe J A, Zymonas J. Makromol Chem, 1973, 163: 1 − 12  doi: 10.1002/macp.1973.021630101

    32. [32]

      Mango L A, Lenz R W. Makromol Chem, 1973, 163: 13 − 36  doi: 10.1002/macp.1973.021630102

    33. [33]

      Hahn F. J Polym Sci, Part A: Polym Chem, 1992, 30(3): 397 − 408  doi: 10.1002/pola.1992.080300307

    34. [34]

      Zhou Q, Wang A, Dai L, Jie S, Li B G. Polymer, 2016, 107: 306 − 315  doi: 10.1016/j.polymer.2016.11.033

    35. [35]

      Song S F, Fu Z S, Xu J T, Fan Z Q. J Appl Polym Sci, 2018, 135(7): 41586

    36. [36]

      Carella J M, Graessley W W, Fetters L J. Macromolecules, 1984, 17(12): 2775 − 2786  doi: 10.1021/ma00142a059

    37. [37]

      Rasid H M, Azhar N H A, Jamaluddin N, Yusoff S F M. Bull Korean Chem Soc, 2016, 37(6): 797 − 801  doi: 10.1002/bkcs.10767

    38. [38]

      Samran J, Phinyocheep P, Daniel P, Kittipoom S. J Appl Polym Sci, 2005, 95(1): 16 − 27  doi: 10.1002/app.20811

    39. [39]

      Mahittikul A, Prasassarakich P, Rempel G L. J Appl Polym Sci, 2007, 103(5): 2885 − 2895  doi: 10.1002/app.25449

    40. [40]

      Azhar N H A, Jamaluddin N, Rasid H M, Yusof M J M, Yusoff S F M. Int J Polym Sci, 2015, 243038

    41. [41]

      Hunig S, Muller H R. Angew Chem Int Ed, 1962, 74(6): 215 − 216

    42. [42]

      Corey E J, Mock W Y, Pasto D J. Tetrahedron Lett, 1961, 2(11): 347 − 352  doi: 10.1016/S0040-4039(01)91637-5

    43. [43]

      Brandrup J, Immergut E H, Grulke E A. Polymer Handbook, 4th ed. New York: Wiley, 1999. 705 − 710

    44. [44]

      Singha N K, De P P, Sivaram S J. J Appl Polym Sci, 1997, 66(9): 1674 − 1652

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    3. [3]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    7. [7]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    8. [8]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    9. [9]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    10. [10]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    11. [11]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    12. [12]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    13. [13]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    20. [20]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(0)
  • Abstract views(207)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return