Citation: Fu-rong Li, Jian-ying Zhao, Hai-quan Guo, Lian-xun Gao. Enhanced Energy Storage Performance of Polyimide-based Nanocomposites by Introducing Two-dimensional Nanosheets[J]. Acta Polymerica Sinica, ;2020, 51(3): 295-302. doi: 10.11777/j.issn1000-3304.2019.19164 shu

Enhanced Energy Storage Performance of Polyimide-based Nanocomposites by Introducing Two-dimensional Nanosheets

  • Increasing demands to improve the energy storage density of polymer dielectric materials have spurred the development of polymers with enhanced permittivity and improved dielectric breakdown. The introduction of high permittivity fillers can effectively improve the polymer permittivity, but it is also easy to cause the reduction of breakdown strength, which affected the improvement of the energy storage density of polymer materials. In this study, the polyimide-based nanocomposite films were fabricated via the in situ polymerization with high permittivity barium titanate (BT) nanoparticles and two-dimensional nanosheets exfoliatred from hydrotalcite (HT) as fillers . The permittivity of PI/BT films gradually increased with the increaseing content of BT nanoparticles. However, the breakdown strength decreased significantly with the increase of BT content. Therefore, the energy storage density of PI/BT composite films showed a remarkable decrease. However, with a small amount of two-dimensional nanosheets of hydrotalcite adding to the PI/BT composite films, the breakdown strength of the composites showed an obvious increase trend. The breakdown strength of the PI/BT film conntaining 30% BT increased by 32.8% when only 1% two-dimensional nanosheets were added. The improvement effect of two-dimensional nanometer sheet on the breakdown strength of PI/BT composite material is the same under different BT contents. Therefore, the penetration strength of PI/BT composite film can be effectively improved by adding two-dimensional nanocrystalline sheets, thus increasing the energy storage density. This is due to the fact that two-dimensional nanosheets can effectively improve the dispersion of high content nanoparticles in the polymer matrix, thus improving the properties of composites related to the dispersion of nanoparticles. Experimental results showed that by introducing two different morphology fillers, the permittivity and breakdown strength of PI/BT/HT composite films can be improved. With the addition of 20% BT and 1% HT, the energy storage density of PI/BT/HT composite film can reach 2.58 J/cm3, which is 14.6% higher than that of the composite film with only 20% BT. This method of simultaneously adding two different morphology fillers such as nano particles and two-dimensional nanosheets into the polymer matrix was expected to be applied in more fields of nanocomposite materials, especially in fields with high content of nano particles.
  • 加载中
    1. [1]

      Deng Sufen(邓素芬), Wu Xiaoyan(吴晓彦), He Limin(何立敏), Xiong Chuanxi(熊传溪), Dong Lijie(董丽杰). Acta Polymerica Sinica(高分子学报), 2014, (10): 1386 − 1391  doi: 10.11777/j.issn1000-3304.2014.14028

    2. [2]

      Dang Z M, Yuan J K, Yao S H, Liao R J. Adv Mater, 2013, 25: 6334 − 6365

    3. [3]

      Dang Z M, Zheng M S, Zha J W. Small, 2016, 12: 1688 − 1701

    4. [4]

      Wang Y F, Wang L X, Yuan Q B, Chen J, Niu Y J, Xu X W, Cheng Y T, Yao B, Wang Q, Wang H. Nano Energy, 2018, 44: 364 − 370

    5. [5]

      Wang Y F, Cui J, Yuan Q B, Niu Y J, Bai Y Y, Wang H. Adv Mater, 2015, 27: 6658 − 6663

    6. [6]

      Azizi A, Gadinski Mr, Li Q, Alsaud M A, Wang J J, Wang Y, Wang B, Liu F H, Chen L Q, Alem N, Wang Q. Adv Mater, 2017, 29: 1701864

    7. [7]

      Zhang Z B, Wang D H, Litt M H, Tan L S, Zhu L. Angew Chem Int Ed, 2018, 57: 1528 − 1531

    8. [8]

      Chi Q G, Gao Z Y, Zhang T D, Zhang C H, Zhang Y, Chen Q G, Wang X, Lei Q Q. ACS Sustain Chem Eng, 2019, 7: 748 − 757

    9. [9]

      Shen Z H, Wang J J, Lin Y H, Nan C W, Chen L Q, Shen Y. Adv Mater, 2018, 30: 1704380

    10. [10]

      Liu S H, Xue S X, Zhang W Q, Zhai J W. Ceram Int, 2014, 40: 15633 − 1564

    11. [11]

      Bi K, Bi M H, Hao Y N, Luo W, Cai Z M, Wang X H, Huang Y H. Nano Energy, 2018, 51: 513 − 523

    12. [12]

      Hu P H, Sun W D, Fan M Z, Qian J F, Jiang J Y, Dan Z K, Lin Y H, Nan C W, Li M, Shen Y. Appl Surface Sci, 2018, 458: 743 − 750

    13. [13]

      Wu L Y, Wu K, Lei C X, Liu D Y, Du R N, Chen F, Fu Q. J Mater Chem A, 2019, 7: 7664 − 7674

    14. [14]

      Ghosh S K, Rahman W, Middya T R, Sen S, Mandal D. Nanotechnology, 2016, 27: 215401

    15. [15]

      Guo Haiquan(郭海泉), Yao Haibo(姚海波), Ma Xiaoye(马晓野), Gao Lianxun(高连勋). Acta Polymerica Sinica(高分子学报), 2015, (3): 356 − 362

    16. [16]

      Li Yuhan(李玉邯), Jin Rizhe(金日哲), Gao Lianxun(高连勋). Acta Polymerica Sinica(高分子学报), 2014, (8): 1096 − 1102

    17. [17]

      Yang Tingting(杨婷婷), Zhou Zhuxin(周竹欣), Zhang Yi(张艺), Liu Siwei(刘四委), Chi Zhenguo(池振国), Xu Jiarui(许家瑞). Acta Polymerica Sinica(高分子学报), 2017, (3): 411 − 428  doi: 10.11777/j.issn1000-3304.2017.16221

    18. [18]

      Jiang B B, Pang X C, Li B, Lin Z Q. J Am Chem Soc, 2015, 137: 11760 − 11767  doi: 10.1021/jacs.5b06736

    19. [19]

      Sun W D, Lu X J, Jiang J Y, Zhang X, Hu P H, Li M, Lin Y H, Nan C W, Shen Y. J Appl Phys, 2017, 121: 244101  doi: 10.1063/1.4989973

    20. [20]

      Xie Y C, Wang J, Yu Y Y, Jiang W R, Zhang Z C. Appl Surf Sci, 2018, 440: 1150 − 1158  doi: 10.1016/j.apsusc.2018.01.301

    21. [21]

      Ma L L, Lei Q Q. J Appl Polym Sci, 2018, 135: 46528  doi: 10.1002/app.46528

    22. [22]

      Chen G L, Lin X J, Li J N, Fisher J G, Zhang Y, Huang S F, Cheng X. Ceram Int, 2018, 44: 15331 − 15337  doi: 10.1016/j.ceramint.2018.05.181

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    3. [3]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    4. [4]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    5. [5]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    6. [6]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    7. [7]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    8. [8]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    9. [9]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    10. [10]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    11. [11]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    12. [12]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    13. [13]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    14. [14]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    15. [15]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    20. [20]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

Metrics
  • PDF Downloads(0)
  • Abstract views(150)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return