Citation: Xin Ke, Ling-xian Meng, Xiang-jian Wan, Xin Zhang, Mei-jia Chang, Chen-xi Li, Yong-sheng Chen. Synthesis and Properties of a Conjugated Acceptor Material for Organic Solar Cells Based on Indacenobis(dithieno[3,2-b:2′,3′-d]pyran)[J]. Acta Polymerica Sinica, ;2020, 51(2): 148-157. doi: 10.11777/j.issn1000-3304.2019.19131 shu

Synthesis and Properties of a Conjugated Acceptor Material for Organic Solar Cells Based on Indacenobis(dithieno[3,2-b:2′,3′-d]pyran)

  • Corresponding author: Yong-sheng Chen, yschen99@nankai.edu.cn
  • Received Date: 8 July 2019
    Revised Date: 1 August 2019
    Available Online: 12 August 2019

  • We designed and synthetized a new non fullerene acceptor with an A-D-A structure, named IDTO2HT-2F, based on indacenobis(dithieno[3,2-b:2′,3′-d]pyran) for organic solar cells. The dithieno[3,2-b:2′,3′-d]pyran will improve the electron-donating capability of the unit and lift the highest occupied molecular orbital (HOMO). Thus, the band gap decreases, making the maximum absorption peak red-shift. Theoretical calculation based on density functional theory (DFT) proved the feasibility of this molecular design. The molecule IDTO2HT-2F has a narrow bang gap of 1.30 eV with the solid absorption edge extended to 956 nm, which is complementary to that of the polymer PM6 film. The broad absorption of the active layer ensures the photovoltaic device to produce high photocurrent. With 0.5% DIO additive and thermal annealing at 120 °C for 10 min, the organic solar cell based on the acceptor IDTO2HT-2F and the polymer PM6 exhibits a power conversion efficiency (PCE) of 10.85% with a short circuit current density (Jsc) of 20.61 mA cm−2, an open-circuit voltage (Voc) of 0.86 V and a fill factor (FF) of 0.62. The results indicate that the strategy of introducing pyran into the molecular backbone is an effective way to tune the absorption and energy level of the molecules, which is also a promising method to design new non fullerene acceptors.
  • 加载中
    1. [1]

      He G, Li Z, Wan X, Liu Y, Zhou J, Long G, Zhang M, Chen Y. J Mater Chem, 2012, 22(18): 9173  doi: 10.1039/c2jm30194f

    2. [2]

      Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270(5243): 1789 − 1791  doi: 10.1126/science.270.5243.1789

    3. [3]

      Krebs F C. Sol Energy Mater Sol Cells, 2009, 93(4): 394 − 412  doi: 10.1016/j.solmat.2008.10.004

    4. [4]

      Liu C, Yi C, Wang K, Yang Y, Bhatta R S, Tsige M, Xiao S, Gong X. ACS Appl Mater Interfaces, 2015, 7(8): 4928 − 4935  doi: 10.1021/am509047g

    5. [5]

      Chen J D, Cui C, Li Y Q, Zhou L, Ou Q D, Li C, Li Y, Tang J X. Adv Mater, 2015, 27(6): 1035 − 1041  doi: 10.1002/adma.201404535

    6. [6]

      Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell T P, Chen Y. J Am Chem Soc, 2015, 137(11): 3886 − 3893  doi: 10.1021/jacs.5b00305

    7. [7]

      Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293  doi: 10.1038/ncomms6293

    8. [8]

      He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russell T P, Cao Y. Nat Photonics, 2015, 9(3): 174 − 179  doi: 10.1038/nphoton.2015.6

    9. [9]

      Zhang S, Ye L, Zhao W, Yang B, Wang Q, Hou J. Sci China Chem, 2015, 58(2): 248 − 256  doi: 10.1007/s11426-014-5273-x

    10. [10]

      Qiu N, Zhang H, Wan X, Li C, Ke X, Feng H, Kan B, Zhang H, Zhang Q, Lu Y, Chen Y. Adv Mater, 2017, 29(6): 1604964  doi: 10.1002/adma.201604964

    11. [11]

      Koster L J A, Mihailetchi V D, Blom P W M. Appl Phys Lett, 2006, 88(9): 093511  doi: 10.1063/1.2181635

    12. [12]

      Kan B, Feng H, Wan X, Liu F, Ke X, Wang Y, Wang Y, Zhang H, Li C, Hou J, Chen Y. J Am Chem Soc, 2017, 139(13): 4929 − 4934  doi: 10.1021/jacs.7b01170

    13. [13]

      Zhang Shaoqing(张少青), Hou Jianhui(侯剑辉). Acta Phys-Chim Sin(物理化学学报), 2017, 33(12): 2327 − 2338

    14. [14]

      Cui Yong(崔勇), Yao Huifeng(姚惠峰), Yang Chenyi(杨晨熠), Zhang Shaoqing(张少青), Hou Jianhui(侯剑辉). Acta Polymerica Sinica(高分子学报), 2018, (2): 223 − 230  doi: 10.11777/j.issn1000-3304.2018.17297

    15. [15]

      Lin Y, Wang J, Zhang Z G, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27(7): 1170 − 1174  doi: 10.1002/adma.201404317

    16. [16]

      Yang Y, Zhang Z G, Bin H, Chen S, Gao L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138(45): 15011 − 15018  doi: 10.1021/jacs.6b09110

    17. [17]

      Lin Y, Zhao F, He Q, Huo L, Wu Y, Parker T C, Ma W, Sun Y, Wang C, Zhu D, Heeger A J, Marder S R, Zhan X. J Am Chem Soc, 2016, 138(14): 4955 − 4961  doi: 10.1021/jacs.6b02004

    18. [18]

      Fei Z, Eisner F D, Jiao X, Azzouzi M, Rohr J A, Han Y, Shahid M, Chesman A S R, Easton C D, McNeill C R, Anthopoulos T D, Nelson J, Heeney M. Adv Mater, 2018, 30(8): 1705209  doi: 10.1002/adma.201705209

    19. [19]

      Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv Mater, 2016, 28(42): 9423 − 9429  doi: 10.1002/adma.201602776

    20. [20]

      Xie D, Liu T, Gao W, Zhong C, Huo L, Luo Z, Wu K, Xiong W, Liu F, Sun Y, Yang C. Solar RRL, 2017, 1(6): 1700044  doi: 10.1002/solr.201700044

    21. [21]

      Yao H, Ye L, Hou J, Jang B, Han G, Cui Y, Su G M, Wang C, Gao B, Yu R, Zhang H, Yi Y, Woo H Y, Ade H, Hou J. Adv Mater, 2017, 29(21): 1700254  doi: 10.1002/adma.201700254

    22. [22]

      Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139(21): 7148 − 7151  doi: 10.1021/jacs.7b02677

    23. [23]

      Yang F, Li C, Lai W, Zhang A, Huang H, Li W. Mater Chem Front, 2017, 1(7): 1389 − 1395  doi: 10.1039/C7QM00025A

    24. [24]

      Luo Z, Bin H, Liu T, Zhang Z G, Yang Y, Zhong C, Qiu B, Li G, Gao W, Xie D, Wu K, Sun Y, Liu F, Li Y, Yang C. Adv Mater, 2018, 30(9): 1706124  doi: 10.1002/adma.201706124

    25. [25]

      Sun J, Ma X, Zhang Z, Yu J, Zhou J, Yin X, Yang L, Geng R, Zhu R, Zhang F, Tang W. Adv Mater, 2018, 30(16): 1707150  doi: 10.1002/adma.201707150

    26. [26]

      Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30(20): 1800868  doi: 10.1002/adma.201800868

    27. [27]

      Zhu J, Xiao Y, Wang J, Liu K, Jiang H, Lin Y, Lu X, Zhan X. Chem Mater, 2018, 30(12): 4150 − 4156  doi: 10.1021/acs.chemmater.8b01677

    28. [28]

      He D, Zhao F, Xin J, Rech J J, Wei Z, Ma W, You W, Li B, Jiang L, Li Y, Wang C. Adv Energy Mater, 2018, 8(30): 1802050  doi: 10.1002/aenm.201802050

    29. [29]

      Liu W, Zhang J, Zhou Z, Zhang D, Zhang Y, Xu S, Zhu X. Adv Mater, 2018, 30(26): 1800403  doi: 10.1002/adma.201800403

    30. [30]

      Kan B, Feng H, Yao H, Chang M, Wan X, Li C, Hou J, Chen Y. Sci China Chem, 2018, 61(10): 1307 − 1313  doi: 10.1007/s11426-018-9334-9

    31. [31]

      Li S, Zhan L, Sun C, Zhu H, Zhou G, Yang W, Shi M, Li C Z, Hou J, Li Y, Chen H. J Am Chem Soc, 2019, 141(7): 3073 − 3082  doi: 10.1021/jacs.8b12126

    32. [32]

      Xu Y, Yao H, Hou J. Chin J Chem, 2019, 37(3): 207 − 215  doi: 10.1002/cjoc.201800471

    33. [33]

      Zhang J, Tan H S, Guo X, Facchetti A, Yan H. Nat Energy, 2018, 3(9): 720 − 731  doi: 10.1038/s41560-018-0181-5

    34. [34]

      Cheng P, Li G, Zhan X, Yang Y. Nature Photonics, 2018, 12(3): 131 − 142  doi: 10.1038/s41566-018-0104-9

    35. [35]

      Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62(6): 746 − 752  doi: 10.1007/s11426-019-9457-5

    36. [36]

      Yuan J, Zhang Y, Zhou L, Zhang G, Yip H L, Lau T K, Lu X, Zhu C, Peng H, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3(4): 1140 − 1151  doi: 10.1016/j.joule.2019.01.004

    37. [37]

      Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat Commun, 2019, 10(1): 2515  doi: 10.1038/s41467-019-10351-5

    38. [38]

      Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 1901872

    39. [39]

      Liu T, Luo Z, Chen Y, Yang T, Xiao Y, Zhang G, Ma R, Lu X, Zhan C, Zhang M, Yang C, Li Y, Yao J, Yan H. Energy Environ Sci, 2019, 12: 2529 − 2536  doi: 10.1039/c9ee01030k

    40. [40]

      Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip H L, Cao Y, Chen Y. Science, 2018, 361(6407): 1094 − 1098  doi: 10.1126/science.aat2612

    41. [41]

      Huang Fei(黄飞). Acta Polymerica Sinica(高分子学报), 2018, (9): 1141 − 1143  doi: 10.11777/j.issn1000-3304.2018.18181

    42. [42]

      Zhang Xi(张希). Acta Polymerica Sinica(高分子学报), 2018, (2): 129 − 131  doi: 10.11777/j.issn1000-3304.2018.18019

    43. [43]

      Xiao Z, Liu F, Geng X, Zhang J, Wang S, Xie Y, Li Z, Yang H, Yuan Y, Ding L. Sci Bull, 2017, 62(19): 1331 − 1336  doi: 10.1016/j.scib.2017.09.017

    44. [44]

      Xiao Z, Jia X, Li D, Wang S, Geng X, Liu F, Chen J, Yang S, Russell T P, Ding L. Sci Bull, 2017, 62(22): 1494 − 1496  doi: 10.1016/j.scib.2017.10.017

    45. [45]

      Li X, Huang H, Peng Z, Sun C, Yang D, Zhou J, Liebman-Pelaez A, Zhu C, Zhang Z G, Zhang Z, Xie Z, Ade H, Li Y. J Mater Chem A, 2018, 6(33): 15933 − 15941  doi: 10.1039/C8TA05920A

    46. [46]

      Wen S, Wu Y, Wang Y, Li Y, Liu L, Jiang H, Liu Z, Yang R. ChemSusChem, 2018, 11(2): 360 − 366  doi: 10.1002/cssc.201701917

    47. [47]

      Zhou Y, Li M, Song J, Liu Y, Zhang J, Yang L, Zhang Z, Bo Z, Wang H. Nano Energy, 2018, (45): 10 − 20

    48. [48]

      Gaussian 16, Revision A.03, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. J A, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J. Gaussian, Inc., Wallingford CT, 2016.

    49. [49]

      Feng H, Qiu N, Wang X, Wang Y, Kan B, Wan X, Zhang M, Xia A, Li C, Liu F, Zhang H, Chen Y. Chem Mater, 2017, 29(18): 7908 − 7917  doi: 10.1021/acs.chemmater.7b02811

    50. [50]

      Wang Y, Fan Q, Guo X, Li W, Guo B, Su W, Ou X, Zhang M. J Mater Chem A, 2017, 5(42): 22180 − 22185  doi: 10.1039/C7TA07785H

  • 加载中
    1. [1]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Shuixing Dai Jilei Jiang Yuxiao Wang Jinqi Hu Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208

    3. [3]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    6. [6]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    7. [7]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    8. [8]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    9. [9]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    10. [10]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    11. [11]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    12. [12]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    13. [13]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    14. [14]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    15. [15]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    16. [16]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    17. [17]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    18. [18]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    19. [19]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    20. [20]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(0)
  • Abstract views(167)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return