Citation: Ling-pan Lu, Kai-ti Wang, Yi Liu, Jia-jun Wu. Systheisis of Vanadium Complexes Bearing Tridentate β-Ketoimine Ligands and Their Catalytic Capabilities towards Ethylene (Co)polymerization[J]. Acta Polymerica Sinica, ;2020, 51(2): 174-182. doi: 10.11777/j.issn1000-3304.2019.19128 shu

Systheisis of Vanadium Complexes Bearing Tridentate β-Ketoimine Ligands and Their Catalytic Capabilities towards Ethylene (Co)polymerization

  • Corresponding author: Kai-ti Wang, ktwang@cqut.edu.cn
  • Received Date: 3 July 2019
    Revised Date: 25 July 2019

  • Vanadium catalysts always show outstanding catalytic properties towards ethylene (co)polymeriztaion, while the high-valent vanadium species would be deactivated because of the generation of inactive or less active low-valent species at elevated temperature and/or in prolonged time. As proved, introducing of bulky groups into the ligands is benefit to improving the catalytic properties of vanadium complexes. Herein, in order to well control the oxidation state of vanadium species, a series of tridentate β-ketoimine type vanadium(III) complexes bearing cyclic skeleton {[(R)X(C6H4)N=CH(C6H5)C10H7O]VCl2(THF): 2a , R = CH3, X = S; 2b , R = CF3, X = S; 2c , R = Ph, X = S; 2d , R = tBu, X = S; 2e , R = Ph2, X = P; 2f , R = Ph, X = O}, were synthesized and characterized. Because of the constrained effects of the cyclic skeleton and the stabilizing effects of the bi-chelating ring, these synthesized catalysts showed high activities and improved stabilities in ethylene (co)polymerization. In the presences of Et2AlCl and ethyl trichloroacetate, catalysts 2a2f showed 8.16 − 19.9 kgpolymer/(mmolV·h), 7.68 − 26.9 kgpolymer/(mmolV·h) and 4.80 − 42.2 kgpolymer/(mmolV·h) of catalytic activities towards ethylene polymerization, ethylene/norbornene (NBE) copolymerization and ethylene/exo-1,4,4a,9,9a,10-hexahy-dro-9,10(1′,2′)-benzeno-1,4-methanoanthracene (HBM) copolymerization, respectively. All of the resultant polymers exhibited a unimodal distribution, indicating that these vanadium catalysts showed single-site catalytic behaviour, even at elevated temperatures (50 − 70 °C). Catalysts 2b , 2d , 2e and 2f showed “positive” comonomer effects in both ethylene/NBE copolymerization and ethylene/HBM copolymerization. Besides, 2a and 2c also exhibited “positive” comonomer effects in ethylene/HBM copolymerization. Cyclic olefin copolymers possessing high molecular weights (NBE: 43.1 − 66.4 kg/mol; HBM: 90.2 − 138 kg/mol) and high comonomer incorporations (NBE: 30.9 mol% − 42.1 mol%; HBM: 14.7 mol% − 25.0 mol%) were obtained facilely via direct copolymerization. The glass transition temperature is dominantly affected by the cyclic olefin incorporations and the steric hindrance of the cyclic olefin. Compared with the ethylene/NBE copolymers, the obtained ethylene/HBM copolymers showed much higher glass transition temperatures (NBE: 84 − 105 °C versus HBM: 173 − 188 °C).
  • 加载中
    1. [1]

      Zhang Y P, Mu H L, Pan L, Wang X L, Li Y S. ChemCatChem, 2019, 11: 2329 − 2340  doi: 10.1002/cctc.v11.9

    2. [2]

      Zhang Y P, Mu H L, Pan L, Wang X L, Li Y S. ACS Catal, 2018, 8: 5963 − 5976  doi: 10.1021/acscatal.8b01088

    3. [3]

      Fang J, Sui X L, Li Y G, Chen C L. Polym Chem, 2018, 9: 4143 − 4149  doi: 10.1039/C8PY00725J

    4. [4]

      Zhang Y R, Yang J X, Pan L, Li Y S. Chinese J Polym Sci, 2018, 36: 214 − 221

    5. [5]

      Guo L, Zhang Y P, Mu H L, Pan L, Wang K T, Gao H, Wang B, Ma Z, Li Y S. Chinese J Polym Sci, 2019, 37: 1 − 9  doi: 10.1007/s10118-019-2189-0

    6. [6]

      Hagen H, Boersma J, Koten G V. Chem Soc Rev, 2002, 31: 357 − 364  doi: 10.1039/B205238E

    7. [7]

      Gambarotta S. Coord Chem Rev, 2003, 237: 229 − 243  doi: 10.1016/S0010-8545(02)00298-9

    8. [8]

      Redshaw C. Dalton Trans, 2010, 39: 5595 − 5604  doi: 10.1039/b924088h

    9. [9]

      Nomura K, Zhang S. Chem Rev, 2011, 111: 2342 − 2362  doi: 10.1021/cr100207h

    10. [10]

      Wu J Q, Li Y S. Coord Chem Rev, 2011, 255: 2303  doi: 10.1016/j.ccr.2011.01.048

    11. [11]

      Christman D L, Keim G I. Macromolecules, 1968, 1: 358  doi: 10.1021/ma60004a017

    12. [12]

      Ma Y L, Reardon D, Gambarotta S, Yap G, Zahalka H, Lemay C. Organometallics, 1999, 18: 2773 − 2781  doi: 10.1021/om9808763

    13. [13]

      Zhang S, Zhang W C, Shang D D, Zhang Z Q, Wu Y X. Dalton Trans, 2015, 44: 15264 − 15270  doi: 10.1039/C5DT00675A

    14. [14]

      Hao X F, Zhang C d, Li L, Zhang H X, Hu Y M, Hao D F, Zhang X Q. Polymers, 2017, 9: 325  doi: 10.3390/polym9080325

    15. [15]

      Zhang S, Zhang W C, Shang D D, Wu Y X. J Polym Sci, Part A: Polym Chem, 2019, 57: 553 − 561  doi: 10.1002/pola.v57.4

    16. [16]

      Adisson E, Deffieux A, Fontanille M. J Polym Sci, Part A: Polym Chem, 1993, 31: 831 − 839

    17. [17]

      Wu J Q, Pan L, Li Y G, Liu S R, Li Y S. Organometallics, 2009, 28: 1817 − 1825  doi: 10.1021/om801028g

    18. [18]

      Lu L P, Wang J B, Liu J Y, Li Y S. J Polym Sci, Part A: Polym Chem, 2014, 52: 2633 − 2642  doi: 10.1002/pola.v52.18

    19. [19]

      Wang J B, Lu L P, Liu J Y, Li Y S. Dalton Trans, 2014, 43: 12926 − 12934  doi: 10.1039/C4DT01166J

    20. [20]

      Wang K T, Wang Y X, Wang B, Li Y G, Li Y S. Chinese J Polym Sci, 2017, 35: 1110 − 1121  doi: 10.1007/s10118-017-1956-z

    21. [21]

      Redshaw C, Warford L, Dale S H, Elsegood M R. Chem Commun, 2004, 1954 − 1955

    22. [22]

      Lorber C, Despagnet-Ayoub E, Vendier L, Arbaoui A, Redshaw C. Catal Sci Technol, 2011, 1: 489 − 494  doi: 10.1039/c1cy00089f

    23. [23]

      Redshaw C, Walton M J, Lee D S, Jiang C, Elsegood M R, Michiue K. Chem Eur J, 2015, 21: 5199 − 5210  doi: 10.1002/chem.201406084

    24. [24]

      Redshaw C, Walton M, Michiue K, Chao Y, Walton A, Elo P, Sumerin V, Jiang C, Elsegood M R. Dalton Trans, 2015, 44: 12292 − 12303  doi: 10.1039/C5DT00376H

    25. [25]

      Zhang S, Nomura K. J Am Chem Soc, 2010, 132: 4960 − 4965  doi: 10.1021/ja100573d

    26. [26]

      Igarashi A, Zhang S, Nomura K. Organometallics, 2012, 31: 3575 − 3581  doi: 10.1021/om3000532

    27. [27]

      Tang X Y, Igarashi A, Sun W H, Inagaki A, Liu J Y, Zhang W J, Li Y S, Nomura K. Organometallics, 2014, 33: 1053 − 1060  doi: 10.1021/om401119y

    28. [28]

      Liu Y, Xiang H X, Wang K T, Wu G, Li Y B. Macromol Chem Phys, 2019, 220: 1900008  doi: 10.1002/macp.v220.9

    29. [29]

      Kakiuchi F, Matsuura Y, Kan S, Chatani N. J Am Chem Soc, 2005, 127: 5936 − 5945  doi: 10.1021/ja043334n

    30. [30]

      Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N, Murai S. Bull Chem Soc Jpn, 1995, 68: 62 − 83  doi: 10.1246/bcsj.68.62

    31. [31]

      Dai X D, Wong A, Virgil S C. J Org Chem, 1998, 63: 2597 − 2600  doi: 10.1021/jo972105z

    32. [32]

      Hong M, Cui L, Liu S R, Li Y S. Macromolecules, 2012, 45: 5397 − 5402  doi: 10.1021/ma300730y

    33. [33]

      Lu L P, Suo F Z, Feng Y L, Song L L, Li Y, Li Y J, Wang K T. Eur J Med Chem, 2019, 176: 1 − 10  doi: 10.1016/j.ejmech.2019.04.073

    34. [34]

      Tang X Y, Wang Y X, Li B X, Liu J Y, Li Y S. J Polym Sci, Part A: Polym Chem, 2013, 51: 1585 − 1594  doi: 10.1002/pola.26528

  • 加载中
    1. [1]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    2. [2]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    3. [3]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    4. [4]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    5. [5]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    9. [9]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    10. [10]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    11. [11]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    12. [12]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    13. [13]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    14. [14]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    17. [17]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    18. [18]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

Metrics
  • PDF Downloads(0)
  • Abstract views(139)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return