Citation: Xue-si Chen, Guo-qiang Chen, You-hua Tao, Yu-zhong Wang, Xiao-bing Lv, Li-qun Zhang, Jin Zhu, Jun Zhang, Xian-hong Wang. Research Progress in Eco-polymers[J]. Acta Polymerica Sinica, ;2019, 50(10): 1068-1082. doi: 10.11777/j.issn1000-3304.2019.19124 shu

Research Progress in Eco-polymers

  • Eco-polymers are a kind of sustainable polymers with low environmental loads through their whole life cycles. As polymers respording to the call of environment, eco-polymers were born in the 1990s while the polymer industry in the world developed very fast. Now, such research grows into a hot point in polymer science. Employing monomers from renewable resources (not limited to renewable resources), much great progress has been made in the past three decades in China, most of which started from highly active and selective catalyst design to controllable polymerization method, till performance adjustment and functionalization, constituting a major force to drive the fast development of eco-polymers in the world. In this review, we try to summarized the fundamental contributions from Chinese scientists in eco-polymers, such as poly(lactic acid)s, polyhydroxyalkanoates, amino acid based polymers, poly(1,4-dioxan-2-one), CO2 copolymers, bio-based elastomers, 2,5-furandicarboxylic acid based polyesters, and cellulose derivatives, and provide a perspective on the future of these polymers.
  • 加载中
    1. [1]

      Schneiderman D K, Hillmyer M A. Macromolecules, 2017, 50: 3733 − 3749

    2. [2]

      Pang X, Zhuang X L, Tang Z H, Chen X S. Biotechnol J, 2010, 5: 1125 − 1136  doi: 10.1002/biot.v5.11

    3. [3]

      Thomas C M. Chem Soc Rev, 2010, 39: 165 − 173  doi: 10.1039/B810065A

    4. [4]

      Du H Z, Pang X, Yu H Y, Zhuang X L, Chen X S, Cui D M, Wang X H, Jing X B. Macromolecules, 2007, 40: 1904 − 1913  doi: 10.1021/ma062194u

    5. [5]

      Duan R L, Hu C Y, Li X, Pang X, Sun Z Q, Chen X S, Wang X H. Macromolecules, 2017, 50: 9188 − 9195  doi: 10.1021/acs.macromol.7b01766

    6. [6]

      Hu C Y, Duan R L, Yang S C, Pang X, Chen X S. Macromolecules, 2018, 51: 4699 − 4704  doi: 10.1021/acs.macromol.8b00696

    7. [7]

      Zhou Y C, Hu C Y, Zhang T H, Xu X W, Duan R L, Luo Y, Sun Z Q, Pang X, Chen X S. Macromolecules, 2019, 52: 3462 − 3470  doi: 10.1021/acs.macromol.9b00001

    8. [8]

      Pang X, Duan R L, Li X, Hu C Y, Wang X H, Chen X S. Macromolecules, 2018, 51: 906 − 913  doi: 10.1021/acs.macromol.7b02662

    9. [9]

      Shao J, Sun J R, Bian X C, Cui Y, Zhou Y C, Li G, Chen X S. Macromolecules, 2013, 46: 6963 − 6971  doi: 10.1021/ma400938v

    10. [10]

      Gadgil B S T, Killi N, Rathna G V. Med Chem Comm, 2017, 8(9): 1774 − 1787  doi: 10.1039/C7MD00252A

    11. [11]

      Chen G Q, Jiang X R. Curr Opin Biotechnol, 2018, 50: 94 − 100

    12. [12]

      Tan D, Wu Q, Chen J C, Chen G Q. Metab Eng, 2014, 26: 34 − 47  doi: 10.1016/j.ymben.2014.09.001

    13. [13]

      Zhao H, Zhang H M, Chen X, Li T, Wu Q, Ouyang Q, Chen G Q. Metab Eng, 2017, 39: 128 − 140  doi: 10.1016/j.ymben.2016.11.007

    14. [14]

      Chen G Q, Wang Y. Chinese J Polym Sci, 2013, 31(5): 719 − 736  doi: 10.1007/s10118-013-1280-1

    15. [15]

      Leuchs H. Chem Ber, 1906, 41: 1721 − 1726

    16. [16]

      Curtius T, Sieber W. Ber Dtsch Chem Ges B, 1921, 54: 1430 − 1437  doi: 10.1002/cber.19210540707

    17. [17]

      Li Guangxian(李光宪), Yang Xidong(杨曦东), Yu Tongyin(于同隐). Journal of Functional Polymers(功能高分子学报), 1989, (2): 53 − 58

    18. [18]

      Tao Youhua(陶友华). Acta Polymerica Sinica(高分子学报), 2016, (9): 1151 − 1159

    19. [19]

      Tao Y H, Chen X, Fan J, Wang S, Xiao C, Cui F, Li Y, Bian Z, Chen X S, Wang X H. Chem Sci, 2015, 6: 6385 − 6391  doi: 10.1039/C5SC02479J

    20. [20]

      Wu Y, Zhang D, Ma P, Zhou R, Hua L, Liu R. Nat Commun, 2018, 9: 5297 − 6306  doi: 10.1038/s41467-018-07711-y

    21. [21]

      Chen C, Wang Z, Li Z B. Biomacromolecules, 2011, 12: 2859 − 2863  doi: 10.1021/bm200849m

    22. [22]

      Xiao C S, Zhao C, He P, Tang Z H, Chen X S, Jing X B. Macromol Rapid Commun, 2010, 31: 991 − 997  doi: 10.1002/marc.200900821

    23. [23]

      Hou Y, Yuan J, Zhou Y, Yu J, Lu H. J Am Chem Soc, 2016, 138: 10995 − 11000  doi: 10.1021/jacs.6b05413

    24. [24]

      Yang K K, Wang X L, Wang Y Z. J Macromol Sci, Polym Rev, 2002, C42: 373 − 398

    25. [25]

      Li X Y, Zhou Q, Wen Z B, Hui Y, Yang K K, Wang Y Z. Polym Degrad Stab, 2015, 121: 253 − 260  doi: 10.1016/j.polymdegradstab.2015.09.016

    26. [26]

      Dong F X, Xu C, Tong X Z, Wang X L, Song F, Wang Y Z. J Mol Catal B: Enzym, 2013, 96: 40 − 45  doi: 10.1016/j.molcatb.2013.06.004

    27. [27]

      Chen R Y, Zhang Y R, Wang Y Z. J Mol Catal B: Enzym, 2009, 57: 224 − 228  doi: 10.1016/j.molcatb.2008.09.013

    28. [28]

      Liu W, Tian G Q, Yang D D, Wu G, Chen S C, Wang Y Z. Polym Chem, 2019, 10: 1526 − 1536  doi: 10.1039/C9PY00111E

    29. [29]

      Chen Y Y, Wu G, Qiu Z C, Wang X L, Zhang Y, Lu F, Wang Y Z. J Polym Sci, Part A: Polym Chem, 2008, 46: 3207 − 3213  doi: 10.1002/pola.22656

    30. [30]

      Yuan Y, Ding S D, Zhao Y Q, Wang Y Z. Chinese J Polym Sci, 2014, 32: 1678 − 1689  doi: 10.1007/s10118-014-1545-3

    31. [31]

      Inoue S, Koinuma H, Tsuruta T. J Polym Sci B Polym Lett, 1969, 7: 287 − 292  doi: 10.1002/pol.1969.110070408

    32. [32]

      Chen X H, Shen Z Q, Zhang Y F. Macromolecules, 1991, 24(19): 5305 − 5308  doi: 10.1021/ma00019a014

    33. [33]

      Liu B Y, Zhao X J, Wang X H, Wang F S. J Polym Sci, Part A: Polym Chem, 2001, 39(16): 2751 − 2754  doi: 10.1002/(ISSN)1099-0518

    34. [34]

      Zhang X H, Wei R J, Zhang Y Y, D u, B Y, Fan Z Q. Macromolecules, 2015, 48: 536 − 544  doi: 10.1021/ma5023742

    35. [35]

      Lu X B, Wang Y. Angew Chem Int Ed, 2004, 43(27): 3574 − 3577  doi: 10.1002/(ISSN)1521-3773

    36. [36]

      Lu X B, Ren W M, Wu G P. Acc Chem Res, 2012, 45(10): 1721 − 1735  doi: 10.1021/ar300035z

    37. [37]

      Liu Y, Ren W M, Liu J, Lu X B. Angew Chem Int Ed, 2013, 52(44): 11594 − 11598  doi: 10.1002/anie.201305154

    38. [38]

      Liu Y, Ren W M, Liu C, Fu S, Wang M, He K K, Li R R, Lu X B. Macromolecules, 2014, 47(22): 7775 − 7788  doi: 10.1021/ma5019186

    39. [39]

      Liu Y, Ren W M, Wang M, Liu C, Lu X B. Angew Chem Int Ed, 2015, 54(7): 2241 − 2244  doi: 10.1002/anie.201410692

    40. [40]

      Liu Y, Wang M, Ren W M, Xu Y C, Lu X B. Angew Chem Int Ed, 2015, 54(24): 7042 − 7046  doi: 10.1002/anie.201501417

    41. [41]

      Lv Xiaobing(吕小兵). Acta Polymerica Sinica(高分子学报), 2016, (9): 1166 − 1178  doi: 10.11777/j.issn1000-3304.2016.16151

    42. [42]

      Sheng X F, Wu W, Qin Y S, Wang X H, Wang F S. Polym Chem, 2015, 6(26): 4719 − 4724  doi: 10.1039/C5PY00335K

    43. [43]

      Wei T, Lei L J, Kang H L, Qiao B, Wang Z, Zhang L Q, Coates P, Hua K C, Kulig J. Adv Eng Mater, 2011, 14: 112 − 118

    44. [44]

      Wang R G, Ma J, Zhou X X, Wang Z, Kang H L, Zhang L Q, Hua K C, Kulig J. Macromolecules, 2012, 45(17): 6830 − 6839  doi: 10.1021/ma301183k

    45. [45]

      Lei W W, Russell T P, Hu L, Zhou X X, Qiao H, Wang W C, Wang R G, Zhang L Q. ACS Sustain Chem Eng, 2017, 5: 5214 − 5223  doi: 10.1021/acssuschemeng.7b00574

    46. [46]

      Qiao H, Wang R G, Yao H, Zhou X X, Lei W W, Hu X R, Zhang L Q. Polym Chem, 2015, 6(34): 6140 − 6151  doi: 10.1039/C5PY00720H

    47. [47]

      Wang J G, Liu X Q, Zhang Y J, Liu F, Zhu J. Polymer, 2016, 103: 1 − 8  doi: 10.1016/j.polymer.2016.09.030

    48. [48]

      Wang J G, Liu X Q, Liu F, Zhang X Q, Zhu J. J Polym Sci, Part A: Polym Chem, 2017, 55: 3298 − 3307  doi: 10.1002/adma.200601521

    49. [49]

      Hu H, Zhang R Y, Wang J G, Ying W B, Zhu J. ACS Sustain Chem Eng, 2018, 6(6): 7488 − 7498  doi: 10.1021/acssuschemeng.8b00174

    50. [50]

      Cai J, Zhang L N. Macromol Biosci, 2005, 5(6): 539 − 548  doi: 10.1002/(ISSN)1616-5195

    51. [51]

      Cai J, Zhang L N, Liu S L, Liu Y T, Xu X J, Chen X M, Chu B, Guo X L, Xu J, Cheng H, Han C C, Kuga S. Macromolecules, 2008, 41(23): 9345 − 9351  doi: 10.1021/ma801110g

    52. [52]

      Cai J, Zhang L N. Biomacromolecules, 2006, 7(1): 183 − 189  doi: 10.1021/bm0505585

    53. [53]

      Wang S, Lu A, Zhang L N. Prog Polym Sci, 2016, 53: 169 − 206  doi: 10.1016/j.progpolymsci.2015.07.003

    54. [54]

      Cai J, Zhang L N, Zhou J P, Qi H S, Chen H, Kondo T, Chen X M, Chu B. Adv Mater, 2007, 19(6): 821 − 825  doi: 10.1002/(ISSN)1521-4095

    55. [55]

      Xu DF, Chen C J, Xie J, Zhang B, Miao L, Cai J, Huang Y H, Zhang L N. Adv Energy Mater, 2016, 6(6): 1501929  doi: 10.1002/aenm.201501929

    56. [56]

      Yang X F, Liu G Q, Peng L, Guo J H, Tao L, Yuan J Y, Chang C Y, Wei Y, Zhang L N. Adv Funct Mater, 2017, 27(40): 1703174  doi: 10.1002/adfm.v27.40

    57. [57]

      Zhao D, Huang J C, Zhong Y, Li K, Zhang L N, Cai J. Adv Funct Mater, 2016, 26(34): 6279 − 6287  doi: 10.1002/adfm.v26.34

    58. [58]

      Cai J, Liu SL, Feng J, Kimura S, Wada M, Kuga S, Zhang L N. Angew Chem Int Ed, 2012, 51(9): 2076 − 2079  doi: 10.1002/anie.201105730

    59. [59]

      Dong Y, Jia B Q, Fu F Y, Zhang H Y, Zhang L N, Zhou J P. Angew Chem Int Ed, 2016, 55(43): 13504 − 13508  doi: 10.1002/anie.201607455

    60. [60]

      Shi Z Q, Gao H C, Feng J, Ding B B, Cao X D, Kuga S, Wang Y J, Zhang L N, Cai J. Angew Chem Int Ed, 2014, 53(21): 5380 − 5384  doi: 10.1002/anie.v53.21

    61. [61]

      Ren Qiang(任强), Wu Jin(武进), Zhang Jun(张军), He Jiasong(何嘉松), Guo Meili(过梅丽). Acta Polymerica Sinica(高分子学报), 2003, (3): 448 − 451  doi: 10.3321/j.issn:1000-3304.2003.03.025

    62. [62]

      Zhang H, Wu J, Zhang J, He J S. Macromolecules, 2005, 38: 8272 − 8277  doi: 10.1021/ma0505676

    63. [63]

      Zhang J M, Zhang H, Wu J, Zhang J, He J S, Xiang J F. Phys Chem Chem Phys, 2010, 12: 1941 − 1947  doi: 10.1039/b920446f

    64. [64]

      Zhang H, Wang Z G, Zhang Z N, Wu J, Zhang J, He J S. Adv Mater, 2007, 19: 698 − 704  doi: 10.1002/adma.200600442

    65. [65]

      Zhang J M, Wu J, Yu J, Zhang X Y, He J S, Zhang J. Mater Chem Front, 2017, 1: 1273 − 1290  doi: 10.1039/C6QM00348F

    66. [66]

      Fu F Y, Zhou J P, Zhou X M, Zhang L N, Li D X, Kondo T. ACS Sustain Chem Eng, 2014, 2(10): 2363 − 2370  doi: 10.1021/sc5003787

    67. [67]

      Fu F Y, Li L Y, Liu L J, Cai J, Zhang Y P, Zhou J P, Zhang L N. ACS Appl Mater Interfaces, 2015, 7(4): 2597 − 2606  doi: 10.1021/am507639b

    68. [68]

      Song Y B, Sun Y X, Zhang X Z, Zhou J P, Zhang L N. Biomacromolecules, 2008, 9(8): 2259 − 2264  doi: 10.1021/bm800429a

    69. [69]

      You J, Xie S Y, Cao J F, Ge H, Xu M, Zhou J P, Zhang L N. Macromolecules, 2016, 49(3): 1049 − 1059  doi: 10.1021/acs.macromol.5b02231

    70. [70]

      Wu J, Zhang J, Zhang H, He J S, Ren Q, Guo M L. Biomacromolecules, 2004, 5(2): 266 − 268  doi: 10.1021/bm034398d

    71. [71]

      Cao Y, Wu J, Meng T, Zhang J, He J S, Li H Q, Zhang Y. Carbohyd Polym, 2007, 69(4): 665 − 672  doi: 10.1016/j.carbpol.2007.02.001

    72. [72]

      Luan Y H, Zhang J M, Zhan M S, Wu J, Zhang J, He J S. Carbohyd Polym, 2013, 92(1): 307 − 311  doi: 10.1016/j.carbpol.2012.08.111

    73. [73]

      Zhang J M, Wu J, Cao Y, Sang S M, Zhang J, He J S. Cellulose, 2009, 16(2): 299 − 308  doi: 10.1007/s10570-008-9260-2

    74. [74]

      Yan C H, Zhang J M, Lv Y X, Yu J, Wu J, Zhang J, He J S. Biomacromolecules, 2009, 10(8): 2013 − 2018  doi: 10.1021/bm900447u

    75. [75]

      Tian W G, Zhang J M, Yu J, Wu J, Nawaz H, Zhang J, He J S, Wang F S. Adv Optical Mater, 2016, 4(12): 2044 − 2050  doi: 10.1002/adom.v4.12

    76. [76]

      Tian W G, Zhang J M, Yu J, Wu J, Zhang J, He J S, Wang F S. Adv Funct Mater, 2018, 28(9): 1703548  doi: 10.1002/adfm.v28.9

    77. [77]

      Jia R N, Tian W G, Bai H T, Zhang J M, Wang S, Zhang J. Nat Commun, 2019, 10: 795  doi: 10.1038/s41467-019-08675-3

    78. [78]

      Chen Wenshuai(陈文帅), Yu Haipeng(于海鹏), Liu Yixing(刘一星), Jiang Naixiang(蒋乃翔), Chen Peng(陈鹏). Acta Polymerica Sinica(高分子学报), 2010, (11): 1320 − 1326  doi: 10.3724/SP.J.1105.2010.09438

    79. [79]

      Chen W S, Yu H P, Liu Y X, Chen P. Carbohyd Polym, 2011, 83(4): 1804 − 1811  doi: 10.1016/j.carbpol.2010.10.040

    80. [80]

      Li Y N, Liu Y Z, Chen W S, Wang Q W, Liu Y X, Li J, Yu H P. Green Chem, 2016, 18(4): 1010 − 1018  doi: 10.1039/C5GC02576A

    81. [81]

      Liu Y Z, Chen W S, Xia Q Q, Guo B T, Wang Q W, Liu S X, Liu Y X, Li J, Yu H P. ChemSusChem, 2017, 10(8): 1692 − 1700  doi: 10.1002/cssc.201601795

    82. [82]

      Chen W S, Yu H P, Lee S Y, Wei T, Li J, Fan Z J. Chem Soc Rev, 2018, 47(8): 2837 − 2872  doi: 10.1039/C7CS00790F

    83. [83]

      Rao X M, Kuga S, Wu M, Huang Y. Cellulose, 2015, 22: 2341 − 2348  doi: 10.1007/s10570-015-0659-2

    84. [84]

      Zhao M M, Kuga S, Jiang S D, Wu M, Huang Y. Cellulose, 2016, 23(5): 2809 − 2818  doi: 10.1007/s10570-016-1033-8

    85. [85]

      Zhao M M, Kuga S, Wu M, Huang Y. Green Chem, 2016, 18(10): 3006 − 3012  doi: 10.1039/C6GC00660D

    86. [86]

      Li Y, Jiang K, Feng J, Liu J Z, Huang R, Chen Z J, Yang J C, Dai Z H, Chen Y, Wang N X, Zhang W J, Zheng W F, Yang G, Jiang X Y. Adv Healthc Mater, 2017, 6(11): 1601343  doi: 10.1002/adhm.v6.11

    87. [87]

      Li S, Huang D, Zhang B, Xu X, Wang M, Yang G, Yan S. Adv Energy Mater, 2014, 4(10): 1301655  doi: 10.1002/aenm.201301655

    88. [88]

      Gao M H; Li J, Bao Z X, Hu M D, Nian R, Feng D X, An D, Li X, Xian M, Zhang H B. Nat Commun, 2019, 10: 437  doi: 10.1038/s41467-018-07879-3

    89. [89]

      Hong M, Chen E Y. Nat Chem, 2016, 8(1): 42 − 49  doi: 10.1038/nchem.2391

    90. [90]

      Zhao N, Ren C, Li H, Li Y, Liu S, Li Z. Angew Chem Int Ed, 2017, 56(42): 12987 − 12990  doi: 10.1002/anie.201707122

    91. [91]

      Shen Y, Zhao Z, Li Y, Liu S, Liu F, Li Z. Polym Chem, 2019, 10(10): 1231 − 1237  doi: 10.1039/C8PY01812J

    92. [92]

      Zhang C J, Hu L F, Wu H L, Cao X H, Zhang X H. Macromolecules, 2018, 51(21): 8705 − 8711  doi: 10.1021/acs.macromol.8b01757

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    3. [3]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    4. [4]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    7. [7]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    8. [8]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    11. [11]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    12. [12]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    13. [13]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    14. [14]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    15. [15]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    16. [16]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    17. [17]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    18. [18]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    19. [19]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    20. [20]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

Metrics
  • PDF Downloads(0)
  • Abstract views(288)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return