Citation: Fei Huang, Zhi-shan Bo, Yan-hou Geng, Xian-hong Wang, Li-xiang Wang, Yu-guang Ma, Jian-hui Hou, Wen-ping Hu, Jian Pei, Huan-li Dong, Shu Wang, Zhen Li, Zhi-gang Shuai, Yong-fang Li, Yong Cao. Study on Optoelectronic Polymers: An Overview and Outlook[J]. Acta Polymerica Sinica, ;2019, 50(10): 988-1046. doi: 10.11777/j.issn1000-3304.2019.19110 shu

Study on Optoelectronic Polymers: An Overview and Outlook

  • Optoelectronic polymers possess delocalized π electron skeletons that enable various optoelectronic properties and applications. As a frontier research directions of polymer science, optoelectronic polymers have attracted wide attention because of their fascinating properties such as low-cost synthesis, light-weight and easy manufacture of thin film devices by solution cast or printing technologies. These features have endowed optoelectronic polymers with great potential applications in the field of organic optoelectronic devices, and also have motivated chemists to construct a variety of optoelectronic polymers. This review article aims to summarize the important research progresses of optoelectronic polymers in China, including the molecular engineering, novel and controllable polymerization, regulation on properties, various aplications and theoretic studies of optoelectronic conjugated polymers.
  • 加载中
    1. [1]

      Shao S Y, Wang S M, Xu X S, Yang Y, Lv J H, Ding J Q, Wang L X, Jing X B, Wang F S. Chem Sci, 2018, 9(46): 8656 − 8664  doi: 10.1039/C8SC03753A

    2. [2]

      Ni Z J, Wang H L, Zhao Q, Zhang J Q, Wei Z X, Dong H L, Hu W P. Adv Mater, 2019, 31(10): 1806010  doi: 10.1002/adma.v31.10

    3. [3]

      Meng L X, Zhang Y M, WanX J, Li C X, Zhang X, Wang Y B, Ke X, Xiao Z, Ding L M, Xia R X, Yip H L, Cao Y, Chen Y S. Science, 2018, 361(6407): 1094 − 1098  doi: 10.1126/science.aat2612

    4. [4]

      Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Nature, 1990, 347: 539 − 541  doi: 10.1038/347539a0

    5. [5]

      Qiu S, Lu P, Liu X, Shen F Z, Liu L L, Ma Y G, Shen J C. Macromolecules, 2003, 36(26): 9823 − 9829  doi: 10.1021/ma034929q

    6. [6]

      Liu L L, Qiu S, Wang B L, Zhang W, Lu P, Xie Z Q, Hanif M, Ma Y G, Shen J C. J Phys Chem B, 2005, 109(49): 23366 − 23370  doi: 10.1021/jp0547818

    7. [7]

      Wu Y G, Zhang J Y, Fei Z P, Bo Z S. J Am Chem Soc, 2008, 130(23): 7192 − 7193  doi: 10.1021/ja801422n

    8. [8]

      Tour J M, Lamba J J S. J Am Chem Soc, 1993, 115(11): 4935 − 4936  doi: 10.1021/ja00064a083

    9. [9]

      Yao Y X, Lamba J J S, Tour J M. J Am Chem Soc, 1998, 120(12): 2805 − 2810  doi: 10.1021/ja972744r

    10. [10]

      Zhang Q T, Tour J M. J Am Chem Soc, 1997, 119(41): 9624 − 9631  doi: 10.1021/ja964223u

    11. [11]

      Zhang C Y, Tour J M. J Am Chem Soc, 1999, 121(38): 8783 − 8790  doi: 10.1021/ja991683p

    12. [12]

      Chen Y L, Li F H, Bo Z S. Macromolecules, 2010, 43(3): 1349 − 1355  doi: 10.1021/ma902375a

    13. [13]

      Chen Y L, Huang W G, Li C H, Bo Z S. Macromolecules, 2010, 43(24): 10216 − 10220  doi: 10.1021/ma1021117

    14. [14]

      Pouliot J R, Grenier F, Blaskovits J T, Beaupre S, Leclerc M. Chem Rev, 2016, 116(22): 14225 − 14274  doi: 10.1021/acs.chemrev.6b00498

    15. [15]

      Geng Yanhou(耿延候), Sui Ying(睢颖). Acta Polymerica Sinica(高分子学报), 2019, 50(2): 109 − 117

    16. [16]

      Guo Q, Dong J, Wan D, Wu D, You J S. Macromol Rapid Commun, 2013, 34(6): 522 − 527  doi: 10.1002/marc.v34.6

    17. [17]

      Gao Y, Zhang X J, Tian H K, Zhang J D, Yan D H, Geng Y H, Wang F S. Adv Mater, 2015, 27(42): 6753 − 6759  doi: 10.1002/adma.201502896

    18. [18]

      Gao Y, Bai J H, Sui Y, Han Y, Deng Y F, Tian H K, Geng Y H, Wang F S. Macromolecules, 2018, 51(21): 8752 − 8760  doi: 10.1021/acs.macromol.8b01112

    19. [19]

      Song H, Deng Y F, Gao Y, Jiang Y, Tian H K, Yan D H, Geng Y H, Wang F S. Macromolecules, 2017, 50(6): 2344 − 2353  doi: 10.1021/acs.macromol.6b02781

    20. [20]

      Gao Y, Deng Y F, Tian H K, Zhang J D, Yan D H, Geng Y H, Wang F S. Adv Mater, 2017, 29(13): 1606217  doi: 10.1002/adma.201606217

    21. [21]

      Guo K, Bai J H, Jiang Y, Wang Z L, Sui Y, Deng Y F, Han Y, Tian H K, Geng Y H. Adv Funct Mater, 2018, 28(31): 1801097  doi: 10.1002/adfm.v28.31

    22. [22]

      Chen F Z, Jiang Y, Sui Y, Zhang J D, Tian H K, Han Y, Deng Y F, Hu W P, Geng Y H. Macromolecules, 2018, 51(21): 8652 − 8661  doi: 10.1021/acs.macromol.8b01885

    23. [23]

      Sakamoto J, Rehahn M, Wegner G, Schlüter A D. Macromol Rapid Commun, 2009, 30(9-10): 653 − 687  doi: 10.1002/marc.v30:9/10

    24. [24]

      Jayakannan M, van Dongen J L J, Janssen R A J. Macromolecules, 2001, 34(16): 5386 − 5393  doi: 10.1021/ma0100403

    25. [25]

      Sun H, Feng F D, Yu M H, Wang S. Macromol Rapid Commun, 2007, 28(18-19): 1905 − 1911

    26. [26]

      Han X, Chen X W, Vamvounis G, Holdcroft S. Macromolecules, 2005, 38(4): 1114 − 1122  doi: 10.1021/ma0488562

    27. [27]

      Liu M F, Chen Y L, Zhang C, Li C H, Li W W, Bo Z S. Polym Chem, 2013, 4(4): 895 − 899  doi: 10.1039/c2py21070c

    28. [28]

      Yokoyama A, Miyakoshi R, Yokozawa T. Macromolecules, 2004, 37(4): 1169 − 1171  doi: 10.1021/ma035396o

    29. [29]

      Huang L, Wu S P, Qu Y, Geng Y H, Wang F S. Macromolecules, 2008, 41(22): 8944 − 8947  doi: 10.1021/ma801538q

    30. [30]

      Sui A G, Shi X C, Wu S P, Tian H K, Geng Y H, Wang F S. Macromolecules, 2012, 45(13): 5436 − 5443  doi: 10.1021/ma3009299

    31. [31]

      Sui A G, Shi X C, Tian H K, Geng Y H, Wang F S. Polym Chem, 2015, 6(45): 4819 − 4827

    32. [32]

      Wu S P, Sun Y Q, Huang L, Wang J W, Zhou Y H, Geng Y H, Wang F S. Macromolecules, 2010, 43(10): 4438 − 4440  doi: 10.1021/ma100537d

    33. [33]

      Shi X C, Sui A G, Wang Y X, Li Y S, Geng Y H, Wang F S. Chem Commun, 2015, 51(11): 2138 − 2140  doi: 10.1039/C4CC08012B

    34. [34]

      Sui A G, Shi X C, Tian H K, Geng Y H, Wang F S. Polym Chem, 2014, 5(24): 7072 − 7080  doi: 10.1039/C4PY00917G

    35. [35]

      Huang W G, Su L J, Bo Z S. J Am Chem Soc, 2009, 131(30): 10348 − 10349  doi: 10.1021/ja9033846

    36. [36]

      Huang W G, Wang M, Du C, Chen Y L, Qin R P, Su L J, Zhang C, Liu Z P, Li C H, Bo Z S. Chem Eur J, 2011, 17(2): 440 − 444  doi: 10.1002/chem.201002574

    37. [37]

      Wu Z Q, Ono R J, Chen Z, Bielawski C W. J Am Chem Soc, 2010, 132(40): 14000 − 14001  doi: 10.1021/ja106999q

    38. [38]

      Liu N, Qi C G, Wang Y, Liu D F, Yin J, Zhu Y Y, Wu Z Q. Macromolecules, 2013, 46(19): 7753 − 7758  doi: 10.1021/ma4016664

    39. [39]

      Gao L M, Hu Y Y, Yu Z P, Liu N, Yin J, Zhu Y Y, Ding Y S, Wu Z Q. Macromolecules, 2014, 47(15): 5010 − 5018  doi: 10.1021/ma5013539

    40. [40]

      Yu Z P, Ma C H, Wang Q, Liu N, Yin J, Wu Z Q. Macromolecules, 2016, 49(4): 1180 − 1190  doi: 10.1021/acs.macromol.5b02759

    41. [41]

      Liu Q, Liu W M, Yao B, Tian H K, Xie Z Y, Geng Y H, Wang F S. Macromolecules, 2007, 40(6): 1851 − 1857  doi: 10.1021/ma0628073

    42. [42]

      Zhang X J, Qu Y, Bu L J, Tian H K, Zhang J P, Wang L X, Geng Y H, Wang F S. Chem Eur J, 2007, 13(21): 6238 − 6248  doi: 10.1002/(ISSN)1521-3765

    43. [43]

      Liu Q, Qu Y, Geng Y H, Wang F S. Macromolecules, 2008, 41(16): 5964 − 5966  doi: 10.1021/ma801172k

    44. [44]

      Wang Q L, Qu Y, Tian H K, Geng Y H, Wang F S. Macromolecules, 2011, 44(6): 1256 − 1260  doi: 10.1021/ma102954h

    45. [45]

      Liu C F, Wang Q L, Tian H K, Geng Y H, Yan D H. Polymer, 2013, 54(9): 2459 − 2465  doi: 10.1016/j.polymer.2013.02.040

    46. [46]

      Bu L J, Guo X Y, Yu B, Qu Y, Xie Z Y, Yan D H, Geng Y H, Wang F S. J Am Chem Soc, 2009, 131(37): 13242 − 13243  doi: 10.1021/ja905980w

    47. [47]

      Qu J H, Gao B R, Tian H K, Zhang X J, Wang Y, Xie Z Y, Wang H Y, Geng Y H, Wang F S. J Mater Chem A, 2014, 2(10): 3632 − 3640  doi: 10.1039/c3ta14701k

    48. [48]

      Ouyang J, Li Y F. Polymer, 1997, 38(8): 1971 − 1976  doi: 10.1016/S0032-3861(96)00749-5

    49. [49]

      Ouyang J, Li Y F. Polymer, 1997, 38(15): 3997 − 3999  doi: 10.1016/S0032-3861(97)00087-6

    50. [50]

      Shi G Q, Jin S, Xue G, Li C. Science, 1995, 267(5200): 994 − 996  doi: 10.1126/science.267.5200.994

    51. [51]

      Shi G Q, Li C, Liang Y Q. Adv Mater, 1999, 11(13): 1145 − 1146  doi: 10.1002/(ISSN)1521-4095

    52. [52]

      Li M, Tang S, Shen F, Liu M, Xie W, Xia H, Liu L, Tian L, Xie Z, Lu P, Hanif M, Lu D, Cheng G, Ma Y. Chem Commun, 2006, (32): 3393 − 3395  doi: 10.1039/b607242a

    53. [53]

      Gu C, Fei T, Zhang M, Li C N, Lu D, Ma Y G. Electrochem Commun, 2010, 12(4): 553 − 556  doi: 10.1016/j.elecom.2010.01.041

    54. [54]

      Gu C, Fei T, Yao L, Lv Y, Lu D, Ma Y G. Adv Mater, 2011, 23(4): 527 − 530  doi: 10.1002/adma.v23.4

    55. [55]

      Shen Z Q, Yang M J, Shi M X, Cai Y P. J Polym Sci Polym Lett Ed, 1982, 20(8): 411 − 416  doi: 10.1002/pol.1982.130200802

    56. [56]

      Cao Y, Qian R Y, Wang F S, Zhao X J. Makromol Chem, Rapid Commun, 1982, 3(10): 687 − 692  doi: 10.1002/marc.1982.030031007

    57. [57]

      Cao Yong(曹镛), Wang Fosong(王佛松), Zhao Xiaojiang(赵晓江), Qian Renyuan(钱人元). Chinese Science Bulletin(科学通报), 1984, 29(3): 153 − 155

    58. [58]

      Bai Chunli(白春礼), Fu Heng(傅亨), Tang Youqi(唐有祺), Cao Yong(曹镛), Qian Renyuan(钱人元), Lu Kunquan(陆坤权), Zhao Yaqin(赵雅琴), Chang Longcun(常龙存). Acta Phys-Chim Sin(物理化学学报), 1985, 1(2): 162 − 168  doi: 10.3866/PKU.WHXB19850207

    59. [59]

      Cao Yong(曹镛), Guo Kezhen(郭可珍), Qian Renyuan(钱人元). Acta Chimica Sinica(化学学报), 1985, 43(5): 425 − 432

    60. [60]

      Jing X B, Wu Y N, Gong X F, Yu H Y, Zhang W G, Wang F S. Makromol Chem, Rapid Commun, 1984, 5(6): 311 − 318  doi: 10.1002/marc.1984.030050602

    61. [61]

      Qian R Y, Qiu J J. Polym J, 1987, 19: 157 − 172  doi: 10.1295/polymj.19.157

    62. [62]

      Pei Q B, Qian R Y. J Electroanal Chem, 1992, 322(1-2): 153 − 166  doi: 10.1016/0022-0728(92)80073-D

    63. [63]

      MacDiarmid A G, Chiang J C, Halpern M. Polym Prep, 1984, 25: 248

    64. [64]

      Wang S L, Wang F S, Ge X H. Synth Met, 1986, 16(1): 99 − 104  doi: 10.1016/0379-6779(86)90158-X

    65. [65]

      Geng Y H, Li J, Sun Z C, Jing X B, Wang F S. Synth Met, 1998, 96(1): 1 − 6  doi: 10.1016/S0379-6779(98)00032-0

    66. [66]

      Gao J B, Li K, Zhang W J, Wang C, Wu Z W, Ji Y P, Zhou Y, Shibata M, Yosomiya R. Macromol Rapid Comm, 1999, 20(10): 560 − 563  doi: 10.1002/(ISSN)1521-3927

    67. [67]

      Zhu K Z, Wang L X, Jing X B, Wang F S. Macromolecules, 2001, 34(24): 8453 − 8455  doi: 10.1021/ma0108665

    68. [68]

      Zhu Y, Hu D, Wan M X, Jiang L, Wei Y. Adv Mater, 2007, 19(16): 2092 − 2096  doi: 10.1002/(ISSN)1521-4095

    69. [69]

      Jing Xiabin(景遐斌), Wang Lixiang(王利祥), Wang Xianhong(王献红), Geng Yanhou(耿延候), Wang Fosong(王佛松). Acta Polymerica Sinica(高分子学报), 2005, (5): 655 − 663  doi: 10.3321/j.issn:1000-3304.2005.05.003

    70. [70]

      Li S Z, Cao Y, Xue Z J. Synth Met, 1987, 20(2): 141 − 149  doi: 10.1016/0379-6779(87)90553-4

    71. [71]

      Cao Y, Smith P, Heeger A J. Synth Met, 1992, 48(1): 91 − 97  doi: 10.1016/0379-6779(92)90053-L

    72. [72]

      Wang Y J, Wang X H, Li J, Mo Z S, Zhao X J, Jing X B, Wang F S. Adv Mater, 2001, 13(20): 1582 − 1585  doi: 10.1002/1521-4095(200110)13:20<1582::AID-ADMA1582>3.0.CO;2-J

    73. [73]

      Luo J, Zhang H M, Wang X H, Zhao X J, Wang F S. Macromolecules, 2007, 40(23): 8132 − 8135  doi: 10.1021/ma070883f

    74. [74]

      Shi X, Lu A, Cai J, Zhang L N, Zhang H M, Li J, Wang X H. Biomacromolecules, 2012, 13(8): 2370 − 2378  doi: 10.1021/bm3006243

    75. [75]

      Wang Y G, Wu W, Cheng L, He P, Wang C X, Xia Y Y. Adv Mater, 2008, 20(11): 2166 − 2170  doi: 10.1002/(ISSN)1521-4095

    76. [76]

      Lu Q, Zhao Q, Zhang H M, Li J, Wang X H, Wang F S. ACS Macro Lett, 2013, 2(2): 92 − 95  doi: 10.1021/mz3005605

    77. [77]

      Gao H, Lu Q, Liu N J, Wang X H, Wang F S. J Mater Chem A, 2015, 3(14): 7215 − 7218  doi: 10.1039/C5TA00379B

    78. [78]

      Chen C Y, Peng H J, Hou T Z, Zhai P Y, Li B Q, Tang C, Zhu W C, Huang J Q, Zhang Q. Adv Mater, 2017, 29(23): 1606802  doi: 10.1002/adma.201606802

    79. [79]

      Wang D W, Li F, Zhao J P, Ren W C, Chen Z G, Tan J, Wu Z S, Gentle I, Lu, G Q, Cheng H M. ACS Nano, 2009, 3(7): 1745 − 1752  doi: 10.1021/nn900297m

    80. [80]

      Zhou S P, Zhang H M, Zhao Q, Wang X H, Wang F S. Carbon, 2013, 52: 440 − 450  doi: 10.1016/j.carbon.2012.09.055

    81. [81]

      Wang H, Feng Q Y, Gong F, Li Y, Zhou G, Wang Z S. J Mater Chem A, 2013, 1(1): 97 − 104  doi: 10.1039/C2TA00705C

    82. [82]

      Chen Y, Wang X H, Li J, Wang X H, Wang F S. Corros Sci, 2007, 49(7): 3052 − 3063  doi: 10.1016/j.corsci.2006.11.007

    83. [83]

      Luo Y Z, Wang X H, Guo W, M. Rohwerder J Electrochem Soc, 2015, 162(6): C294 − C301  doi: 10.1149/2.1101506jes

    84. [84]

      Wang X F, Wang J L, Si Y, Ding B, Yu J Y, Sun G, Luo W J, Zheng G. Nanoscale, 2012, 4(23): 7585 − 7592  doi: 10.1039/c2nr32730a

    85. [85]

      Wu Z Q, Chen X D, Zhu S B, Zhou Z W, Yao Y, Quan W, Liu B. Sens Actuator B-Chem, 2013, 178: 485 − 493  doi: 10.1016/j.snb.2013.01.014

    86. [86]

      Zhao J J, Wu G, Hu Y, Liu Y, Tao X M, Chen W. J Mater Chem A, 2015, 3(48): 24333 − 24337  doi: 10.1039/C5TA06734K

    87. [87]

      Snook G A, Kao P, Best A S. J Power Source, 2011, 196(1): 1 − 12  doi: 10.1016/j.jpowsour.2010.06.084

    88. [88]

      Huang J Y, Wang K, Wei Z X. J Mater Chem, 2010, 20(6): 1117 − 1121  doi: 10.1039/B919928D

    89. [89]

      Zhang H H, Zhang Y N, Gu C, Ma Y G. Adv Energy Mater, 2015, 5(10): 1402175  doi: 10.1002/aenm.201402175

    90. [90]

      Zhang H H, Yao M M, Wei J B, Zhang Y W, Zhang S T, Gao Y, Li J Y, Lu P, Yang B, Ma Y G. Adv Energy Mater, 2017, 7(21): 1701063  doi: 10.1002/aenm.201701063

    91. [91]

      Wu Q, Xu Y, Yao Z Y, Liu A R, Shi G Q. ACS Nano, 2010, 4(4): 1963 − 1970  doi: 10.1021/nn1000035

    92. [92]

      Yao B W, Wang H Y, Zhou Q Q, Wu M M, Zhang M, Li C, Shi G Q. Adv Mater, 2017, 29(28): 1700974  doi: 10.1002/adma.v29.28

    93. [93]

      Ma Y G, Zhang H Y, Shen J C, Che C M. Synth Met, 1988, 94(3): 245 − 248

    94. [94]

      Liu J, Zou J H, Yang W, Wu H B, Li C, Zhang B, Peng J B, Cao Y. Chem Mater, 2008, 20(13): 4499 − 4506  doi: 10.1021/cm800129h

    95. [95]

      Li Y Y, Wu H B, Zou J H, Ying L, Yang W, Cao Y. Org Electron, 2009, 10(5): 901 − 909  doi: 10.1016/j.orgel.2009.04.021

    96. [96]

      Mo Y Q, Tian R Y, Shi W, Cao Y. Chem Commun, 2005, (39): 4925 − 4926  doi: 10.1039/b507518a

    97. [97]

      Lin J Y, Zhu W S, Liu F, Xie L H, Zhang L, Xia R, Xing G C, Huang W. Macromolecules, 2014, 47(3): 1001 − 1007  doi: 10.1021/ma402585n

    98. [98]

      Bai L P, Liu B, Han Y M, Yu M N, Wang J, Zhang X W, Ou C J, Lin J Y, Zhu W S, Xie L H, Yin C R, Zhao J F, Wang J P, Bradley D D C, Huang W. ACS Appl Mater Interfaces, 2017, 9(43): 37856 − 37863  doi: 10.1021/acsami.7b08980

    99. [99]

      Liu J, Min C C, Zhou Q G, Cheng Y X, Wang L X, Ma D G, Jing X B, Wang F S. Appl Phys Lett, 2006, 88(8): 083505  doi: 10.1063/1.2178408

    100. [100]

      Luo J, Zhou Y, Niu Z Q, Zhou Q F, Ma Y, Pei J. J Am Chem Soc, 2007, 129(37): 11314 − 11315  doi: 10.1021/ja073466r

    101. [101]

      Lai W Y, Zhu R, Fan Q L, Hou L T, Cao Y, Huang W. Macromolecules, 2006, 39(11): 3707 − 3709  doi: 10.1021/ma060154k

    102. [102]

      Shao S Y, Hu J, Wang X D, Wang L X, Jing X B, Wang F S. J Am Chem Soc, 2017, 139(49): 17739 − 17742  doi: 10.1021/jacs.7b10257

    103. [103]

      Guan R, Xu Y H, Ying L, Yang W, Wu H B, Chen Q L, Cao Y. J Mater Chem, 2009, 19(4): 531 − 537  doi: 10.1039/B813927J

    104. [104]

      Liu J, Yu L, Zhong C M, He R F, Yang W, Wu H B, Cao Y. RSC Adv, 2012, 2(2): 689 − 696  doi: 10.1039/C1RA00610J

    105. [105]

      Ma Z H, Chen L C, Ding J Q, Wang L X, Jing X B, Wang F S. Adv Mater, 2011, 23(32): 3726 − 3729  doi: 10.1002/adma.v23.32

    106. [106]

      Luo J, Xie G, Gong S, Chen T, Yang C. Chem Commun, 2016, 52(11): 2292 − 2295  doi: 10.1039/C5CC09797E

    107. [107]

      Hou Q, Xu Y S, Yang W, Yuan M, Peng J B, Cao Y. J Mater Chem, 2002, 12(10): 2887 − 2892  doi: 10.1039/b203862e

    108. [108]

      Yang R Q, Tian R Y, Hou Q, Yang W, Cao Y. Macromolecules, 2003, 36(20): 7453 − 7460  doi: 10.1021/ma034134j

    109. [109]

      Yang J, Jiang C Y, Zhang Y, Yang R Q, Yang W, Hou Q, Cao Y. Macromolecules, 2004, 37(4): 1211 − 1218  doi: 10.1021/ma035743u

    110. [110]

      Yang R Q, Tian R Y, Yan J G, Zhang Y, Yang J, Hou Q, Yang W, Zhang C, Cao Y. Macromolecules, 2005, 38(2): 244 − 253  doi: 10.1021/ma047969i

    111. [111]

      Chen L, Zhang B H, Cheng Y X, Xie Z Y, Wang L X, Jing X B, Wang F S. Adv Funct Mater, 2010, 20(18): 3143 − 3153  doi: 10.1002/adfm.201000840

    112. [112]

      Zhang M, Xue S F, Dong W Y, Wang Q, Fei T, Gu C, Ma Y G. Chem Commun, 2010, 46(22): 3923 − 3925  doi: 10.1039/c001170c

    113. [113]

      Tu G L, Zhou Q G, Cheng Y X, Wang L X, Ma D G, Jing X B, Wang F S. Appl Phys Lett, 2004, 85(12): 2172  doi: 10.1063/1.1793356

    114. [114]

      Liu J, Shao S Y, Chen L, Xie Z Y, Cheng Y X, Geng Y H, Wang L X, Jing X B, Wang F S. Adv Mater, 2007, 19(14): 1859 − 1863  doi: 10.1002/(ISSN)1521-4095

    115. [115]

      Liu J, Chen L, Shao S Y, Xie Z, Cheng Y X, Geng Y H, Wang L X, Jing X B, Wang F S. Adv Mater, 2007, 19(23): 4224 − 4228  doi: 10.1002/(ISSN)1521-4095

    116. [116]

      Liu J, Cheng Y X, Xie Z Y, Geng Y H, Wang L X, Jing X B, Wang F S. Adv Mater, 2008, 20(7): 1357 − 1362  doi: 10.1002/(ISSN)1521-4095

    117. [117]

      Jiang J X, Xu Y H, Yang W, Guan R, Liu Z Q, Zhen H Y, Cao Y. Adv Mater, 2006, 18(13): 1769 − 1773  doi: 10.1002/(ISSN)1521-4095

    118. [118]

      Shao S Y, Ding J Q, Wang L X, Jing X B, Wang F S. J Am Chem Soc, 2012, 134(50): 20290 − 20293  doi: 10.1021/ja310158j

    119. [119]

      Huang F, Wu H B, Wang D L, Yang W, Cao Y. Chem Mater, 2004, 16(4): 708 − 716  doi: 10.1021/cm034650o

    120. [120]

      Huang F, Hou L T, Wu H B, Wang X H, Shen H L, Cao W, Yang W, Cao Y. J Am Chem Soc, 2004, 126(31): 9845 − 9853  doi: 10.1021/ja0476765

    121. [121]

      Zeng W J, Wu H B, Zhang C, Huang F, Peng J B, Yang W, Cao Y. Adv Mater, 2007, 19(6): 810 − 814  doi: 10.1002/(ISSN)1521-4095

    122. [122]

      Zheng H, Zheng Y N, Liu N L, Ai N, Wang Q, Wu S, Zhou J H, Hu D G, Yu S F, Han S H, Xu W, Luo C, Meng Y H, Jiang Z X, Chen Y W, Li D Y, Huang F, Wang J, Peng J B, Cao Y. Nat Commun, 2013, 4: 1971  doi: 10.1038/ncomms2971

    123. [123]

      Pei Q B, Yu G, Zhang C, Yang Y, Heeger A J. Science, 1995, 269(5227): 1086 − 1088  doi: 10.1126/science.269.5227.1086

    124. [124]

      Sun Q J, Wang H Q, Yang C H, Li Y F. J Mater Chem, 2003, 13(4): 800 − 806  doi: 10.1039/b209469j

    125. [125]

      Yang C H, Sun Q J, Qiao J, Li Y F. J Phys Chem B, 2003, 107(47): 12981 − 12988  doi: 10.1021/jp034818t

    126. [126]

      Fresta E, Costa R D. J Mater Chem C, 2017, 5(23): 5643 − 5675  doi: 10.1039/C7TC00202E

    127. [127]

      Tang S, Edman L. Top Curr Chem, 2016, 374(40): 375 − 395

    128. [128]

      Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270(5243): 1789 − 1791  doi: 10.1126/science.270.5243.1789

    129. [129]

      Zhou Q M, Hou Q, Zheng L P, Deng X Y, Yu G, Cao Y. Appl Phys Lett, 2004, 84(10): 1653 − 1655  doi: 10.1063/1.1667614

    130. [130]

      Wang E G, Wang L, Lan L F, Luo C, Zhuang W L, Peng J B, Cao Y. Appl Phys Lett, 2008, 92(3): 033307  doi: 10.1063/1.2836266

    131. [131]

      Hou J H, Tan Z A, Yan Y, He Y J, Yang C Y, Li Y F. J Am Chem Soc, 2006, 128(14): 4911 − 4916  doi: 10.1021/ja060141m

    132. [132]

      Qin R P, Li W W, Li C H, Du C, Veit C, Schleiermacher H F, Andersson M, Bo Z S, Liu Z P, Inganäs O, Wuerfel U, Zhang F L. J Am Chem Soc, 2009, 131(41): 14612 − 14613  doi: 10.1021/ja9057986

    133. [133]

      Liang Y Y, Xu Z, Xia J B, Tsai S T, Wu Y, Li G, Ray C, Yu L P. Adv Mater, 2010, 22(20): E135 − E138  doi: 10.1002/adma.200903528

    134. [134]

      Huo L J, Zhang S Q, Guo X, Xu F, Li Y F, Hou J H. Angew Chem Int Ed, 2011, 50(41): 9697 − 9702  doi: 10.1002/anie.201103313

    135. [135]

      Cui C H, Wong W Y, Li Y F. Energy Environ Sci, 2014, 7: 2276 − 2284  doi: 10.1039/C4EE00446A

    136. [136]

      Huo L J, Liu T, Sun X B, Cai Y H, Heeger A J, Sun Y M. Adv Mater, 2015, 27(18): 2938 − 2944  doi: 10.1002/adma.v27.18

    137. [137]

      Chen Z H, Cai P, Chen J W, Liu X C, Zhang L J, Lan L F, Peng J B, Ma Y G, Cao Y. Adv Mater, 2014, 26(16): 2586 − 2591  doi: 10.1002/adma.v26.16

    138. [138]

      Liu Y H, Zhao J B, Li Z K, Mu C, Ma W, Hu H W, Jiang K, Lin H R, Ade H, Yan H. Nat Commun, 2014, 5: 5293  doi: 10.1038/ncomms6293

    139. [139]

      Zhao J B, Li Y K, Yang G F, Jiang K, Lin H R, Ade H, Ma W, Yan H. Nat Energy, 2016, 1(2): 15027  doi: 10.1038/nenergy.2015.27

    140. [140]

      Jin Y C, Chen Z M, Dong S, Zheng N N, Ying L, Jiang X F, Liu F, Huang F, Cao Y. Adv Mater, 2016, 28(44): 9811 − 9818  doi: 10.1002/adma.201603178

    141. [141]

      Jin Y, Chen Z, Xiao M, Peng J, Fan B, Ying L, Zhang G, Jiang X F, Qin Q W, Liang Z Q, Huang F, Cao Y. Adv Energy Mater, 2017, 7(22): 1700944  doi: 10.1002/aenm.201700944

    142. [142]

      Chen H, Hu Z M, Wang H, Liu L, Chao P, Qu J, Chen W, Liu A H, He F. Joule, 2018, 2(8): 1623 − 1634  doi: 10.1016/j.joule.2018.05.010

    143. [143]

      He C, He Q G, He Y J, Li Y F, Bai F L, Yang C H, Ding Y Q, Wang L X, Ye J P. Sol Energy Mater Sol Cells, 2006, 90(12): 1815 − 1827  doi: 10.1016/j.solmat.2005.11.004

    144. [144]

      Zhang J, Yang Y, He C, He Y J, Zhao G J, Li Y F. Macromolecules, 2009, 42(20): 7619 − 7622  doi: 10.1021/ma901896n

    145. [145]

      Zhang J, Deng D, He C, He Y J, Zhang M J, Zhang Z G, Zhang Z J, Li Y F. Chem Mater, 2010, 23(3): 817 − 822

    146. [146]

      Liu Y S, Wan X J, Yin B, Zhou J Y, Long G K, Yin S G, Chen Y S. J Mater Chem, 2010, 20(12): 2464 − 2468  doi: 10.1039/b925048d

    147. [147]

      Kan B, Zhang Q, Li M M, Wan X J, Ni W, Long G K, Wang Y C, Yang X, Feng H, Chen Y. J Am Chem Soc, 2014, 136(44): 15529 − 15532  doi: 10.1021/ja509703k

    148. [148]

      Deng D, Zhang Y, Zhang J, Wang Z, Zhu L, Fang J, Xia B, Wang Z, Lu K, Ma W, Wei Z X. Nat Commun, 2016, 7: 13740  doi: 10.1038/ncomms13740

    149. [149]

      Zheng L, Zhou Q, Deng X, Yuan M, Yu G, Cao Y. J Phys Chem B, 2004, 108(32): 11921 − 11926  doi: 10.1021/jp048890i

    150. [150]

      Zhao G, He Y, Xu Z, Hou J, Zhang M, Min J, Chen H Y, Ye M, Hong Z, Yang Y, Li Y F. Adv Funct Mater, 2010, 20(9): 1480 − 1487  doi: 10.1002/adfm.200902447

    151. [151]

      He Y J, Chen H Y, Hou J H, Li Y F. J Am Chem Soc, 2010, 132(4): 1377 − 1382  doi: 10.1021/ja908602j

    152. [152]

      Zhao G, He Y J, Li Y F. Adv Mater, 2010, 22(39): 4355 − 4358  doi: 10.1002/adma.v22:39

    153. [153]

      Tang C W. Appl Phys Lett, 1986, 48(2): 183 − 185  doi: 10.1063/1.96937

    154. [154]

      Zhan X W, Tan Z A, Domercq B, An Z S, Zhang X, Barlow S, Li Y F, Zhu D B, Kippelen B, Marder S. J Am Chem Soc, 2007, 129(23): 7246 − 7247  doi: 10.1021/ja071760d

    155. [155]

      Liu T, Guo Y, Yi YY, Huo L J, Xue X X, Sun X B, Fu H T, Xiong W T, Meng D, Wang Z H, Liu F, Russel T, Sun Y M. Adv Mater, 2016, 28(45): 10008 − 10015  doi: 10.1002/adma.201602570

    156. [156]

      Lin Y Z, Wang J Y, Zhang Z G, Bai H T, Li Y F, Zhu D B, Zhan X W. Adv Mater, 2015, 27(7): 1170 − 1174  doi: 10.1002/adma.201404317

    157. [157]

      Lin Y Z, He Q, Zhao F W, Huo L J, Mai J Q, Lu X H, Su C J, Li T F, Wang J Y, Zhu J S, Sun Y M, Wang C R, Zhan X W. J Am Chem Soc, 2016, 138(9): 2973 − 2976  doi: 10.1021/jacs.6b00853

    158. [158]

      Yang Y K, Zhang Z G, Bin H J, Chen S S, Gao L, Xue L W, Yang C D, Li Y F. J Am Chem Soc, 2016, 138(45): 15011 − 15018  doi: 10.1021/jacs.6b09110

    159. [159]

      Zhao W C, Li S S, Yao H F, Zhang S Q, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139(21): 7148 − 7151  doi: 10.1021/jacs.7b02677

    160. [160]

      Yao H F, Cui Y, Yu R N, Gao B W, Zhang H, Hou J. Angew Chem Int Ed, 2017, 56(11): 3045 − 3049  doi: 10.1002/anie.201610944

    161. [161]

      Zhang Xi(张希). Acta Polymerica Sinica(高分子学报), 2018, (2): 129 − 131  doi: 10.11777/j.issn1000-3304.2018.18019

    162. [162]

      Cui Yong(崔勇), Yao Huifeng(姚惠峰), Yang Chenyi(杨晨熠), Zhang Shaoqing(张少青), Hou Jianhui(侯剑辉). Acta Polymerica Sinica(高分子学报), 2018, (2): 223 − 230  doi: 10.11777/j.issn1000-3304.2018.17297

    163. [163]

      Sun C, Xia R X, Shi H, Yao H F, Liu X, Hou J H, Huang F, Yip H L, Cao Y. Joule, 2018, 2(9): 1816 − 1826  doi: 10.1016/j.joule.2018.06.006

    164. [164]

      Kan B, Feng H R, Wan X J, Liu F, Ke X, Wang Y B, Wang Y C, Zhang H T, Li C X, Hou J, Chen Y S. J Am Chem Soc, 2017, 139(13): 4929 − 4934  doi: 10.1021/jacs.7b01170

    165. [165]

      Kan B, Zhang J B, Liu F, Wan X J, Li C X, Ke X, Wang Y C, Feng H R, Zhang T M, Long G K, Friend R, Bakulin A, Chen Y S. Adv Mater, 2018, 30(3): 1704904  doi: 10.1002/adma.201704904

    166. [166]

      Li X J, Pan F, Sun C K, Zhang M, Wang Z W, Du J Q, Wang J, Miao M, Xue L W, Zhang C F, Liu F, Li Y F. Nat Commun, 2019, 10: 519  doi: 10.1038/s41467-019-08508-3

    167. [167]

      Xiao Z, Jia X, Li D, Wang S Z, Geng X J, Liu F, Chen J W, Yang S F, Russel T P, Ding L M. Sci Bull, 2018, 62(22): 1494 − 1496

    168. [168]

      Huang Fei(黄飞). Acta Polymerica Sinica(高分子学报), 2018, (9): 1141 − 1143  doi: 10.11777/j.issn1000-3304.2018.18181

    169. [169]

      Li S X, Zhan L L, Liu F, Ren J, Shi M M, Li C Z, Russel T P, Chen H Z. Adv Mater, 2018, 30(6): 1705208  doi: 10.1002/adma.201705208

    170. [170]

      Yuan J, Zhang Y Q, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P. Joule, 2019, 3(4): 1140 − 1151  doi: 10.1016/j.joule.2019.01.004

    171. [171]

      https://www.nrel.gov/pv/cell-efficiency.html

    172. [172]

      Qian D P, Ye L, Zhang M J, Liang Y R, Li L J, Huang Y, Guo X, Zhang S Q, Tan Z A, Hou J H. Macromolecules, 2012, 45(24): 9611 − 9617  doi: 10.1021/ma301900h

    173. [173]

      Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J H. Adv Mater, 2016, 28(23): 4734 − 4739  doi: 10.1002/adma.v28.23

    174. [174]

      Fan Q, Wang Y, Zhang M, Wu B, Guo X, Jiang Y, Li W, Guo B, Ye C, Su W, Fang J, Ou X, Liu F, Wei Z, Sum T, Russell T, Li Y F. Adv Mater, 2017, 30(6): 1704546

    175. [175]

      Liu T, Luo Z H, Fan Q P, Zhang G Y, Zhang L, Gao W, Guo X, Ma W, Zhang M J, Yang C L, Li Y F, Yan H. Energy Environ Sci, 2018, 11(11): 3275 − 3282  doi: 10.1039/C8EE01700J

    176. [176]

      Cui Y, Yao H F, Hong L, Zhang T, Xu Y, Xian K H, Gao B W, Qin J Z, Zhang J Q, Wei Z X, Hou J H. Adv Mater, 2019, 31(14): 1808356  doi: 10.1002/adma.v31.14

    177. [177]

      Zhang S Q, Qin Y P, Zhu J, Hou J H. Adv Mater, 2018, 30(20): 1800868  doi: 10.1002/adma.v30.20

    178. [178]

      Li S S, Ye L, Zhao W C, Yan H P, Yang B, Liu D L, Li W N, Ade H, Hou J H. J Am Chem Soc, 2018, 140(23): 7159 − 7167  doi: 10.1021/jacs.8b02695

    179. [179]

      Yu R N, Yao H F, Hong L, Qin Y P, Zhu J, Cui Y, Li S S, Hou J H. Nat Commun, 2018, 9(1): 4645  doi: 10.1038/s41467-018-07017-z

    180. [180]

      Gao L, Zhang Z G, Bin H J, Xue L W, Yang Y K, Wang C, Liu F, Russell T P, Li Y F. Adv Mater, 2016, 28(37): 8288 − 8295  doi: 10.1002/adma.201601595

    181. [181]

      Bin H J, Gao L, Zhang Z G, Yang Y K, Zhang Y D, Zhang C F, Chen S S, Xue L W, Yang C, Xiao M, Li Y F. Nat Commun, 2016, 7: 13651  doi: 10.1038/ncomms13651

    182. [182]

      Xue L, Yang Y, Xu J, Zhang C, Bin H, Zhang Z, Beibei Qiu, Li X, Sun C, Gao L, Yao J, Chen X, Yang Y, Xiao M, Li Y. Adv Mater, 2017, 29(40): 1703344  doi: 10.1002/adma.201703344

    183. [183]

      Fan B B, Zhang K, Jiang X F, Ying L, Huang F, Cao Y. Adv Mater, 2017, 29(21): 1606396  doi: 10.1002/adma.201606396

    184. [184]

      Fan B B, Du X Y, Liu F, Zhong W K, Ying L, Xie R H, Tang X F, An K, Xin J M, Li N, Ma W, Brabec C J, Huang F, Cao Y. Nat Energy, 2018, 3(12): 1051 − 1058  doi: 10.1038/s41560-018-0263-4

    185. [185]

      Fan B B, Zhang D F, Li M J, Zhong W K, Zeng Z M Y, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 1 − 7

    186. [186]

      Cui C H, Fan X, Zhang M J, Zhang J, Min J, Li Y F. Chem Commun, 2011, 47(40): 11345 − 11347  doi: 10.1039/c1cc14132e

    187. [187]

      Wu Y, Yang H, Zou Y, Dong Y Y, Yuan J Y, Cui C H, Li Y F. Energy Environ Sci, 2019, 12(2): 675 − 683  doi: 10.1039/C8EE03608J

    188. [188]

      Sun C K, Pan F, Bin H J, Zhang J Q, Xue L W, Qiu B B, Wei Z X, Zhang Z G, Li Y F. Nat Commun, 2018, 9(1): 743  doi: 10.1038/s41467-018-03207-x

    189. [189]

      Xu X P, Yu T, Bi Z Z, Ma W, Li Y, Peng Q. Adv Mater, 2018, 30(3): 1703973  doi: 10.1002/adma.v30.3

    190. [190]

      Lai W B, Li C, Zhang J Q, Yang F, Colberts F J M, Guo B, Wang Q M, Li M M, Zhang A D, Janssen R A J, Zhang M J, Li W W. Chem Mater, 2017, 29(17): 7073 − 7077  doi: 10.1021/acs.chemmater.7b02534

    191. [191]

      Feng G T, Li J Y, Colberts F J M, Li M M, Zhang J Q, Yang F, Jin Y, Zhang F L, Janssen R A J, Li C, Li W W. J Am Chem Soc, 2017, 139(51): 18647 − 18656  doi: 10.1021/jacs.7b10499

    192. [192]

      Zhang Z G, Yang Y K, Yao J, Xue L W, Chen S S, Li X J, Morrison W, Yang C, Li Y F. Angew Chem Int Ed, 2017, 56(43): 13503 − 13507  doi: 10.1002/anie.201707678

    193. [193]

      Meng Y, Wu J, Guo X, Su W, Zhu L, Fang J, Zhang Z G, Liu F, Zhang M, Russell T P, Li Y. Sci China Chem, 2019, 62(7): 845 − 850  doi: 10.1007/s11426-019-9466-6

    194. [194]

      Dou C, Long X, Ding Z, Xie Z, Liu J, Wa ng, L. Angew Chem Int Ed, 2016, 55(4): 1436 − 1440  doi: 10.1002/anie.201508482

    195. [195]

      Long X J, Ding Z C, Dou C D, Zhang J D, Liu J, Wang L X. Adv. Mater, 2016, 28(30): 6504 − 6508  doi: 10.1002/adma.201601205

    196. [196]

      Guo Y K, Li Y K, Awartani O, Zhao J B, Han H, Ade H, Zhao D H, Yan H. Adv Mater, 2016, 28(38): 8483 − 8489  doi: 10.1002/adma.v28.38

    197. [197]

      Guo Y K, Li Y K, Awartani O, Han H, Zhao J B, Ade H, Zhao D H, Yan H. Adv Mater, 2017, 29(26): 1700309  doi: 10.1002/adma.201700309

    198. [198]

      Fan B B, Ying L, Wang Z F, He B T, Jiang X F, Huang F, Cao Y. Energy Environ Sci, 2017, 10(5): 1243 − 1251  doi: 10.1039/C7EE00619E

    199. [199]

      Fan B B, Ying L, Zhu P, Pan F, Liu F, Chen J, Huang F, Cao, Y. Adv Mater, 2017, 29(47): 1703906  doi: 10.1002/adma.201703906

    200. [200]

      Li Z, Ying L, Zhu P, Zhong W, Li N, Liu F, Huang F, Cao Y. Energy Environ Sci, 2019, 12(1): 157 − 163  doi: 10.1039/C8EE02863J

    201. [201]

      He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y. Nat Photonics, 2012, 6: 591 − 595  doi: 10.1038/nphoton.2012.190

    202. [202]

      Ouyang X H, Peng R X, Ai L, Zhang X Y, Ge Z Y. Nat Photon, 2015, 9: 520 − 524  doi: 10.1038/nphoton.2015.126

    203. [203]

      Zhang Z G, Qi B Y, Jin Z W, Chi D, Qi Z, Li Y F, Wang J Z. Energy Environ Sci, 2014, 7(6): 1966 − 1973  doi: 10.1039/c4ee00022f

    204. [204]

      Liu J, Wu J, Shao S Y, Deng Y F, Meng B, Xie Z Y, Geng Y H, Wang L X and Zhang F L. ACS Appl Mater Interfaces, 2014, 6: 8237 − 8245  doi: 10.1021/am501001v

    205. [205]

      Wu Z, Sun C, Dong S, Jiang XF, Wu S, Wu H, Yip H L, Huang F, Cao Y. J Am Chem Soc, 2016, 138(6): 2004 − 2013  doi: 10.1021/jacs.5b12664

    206. [206]

      Xu B W, Zheng Z, Zhao K, Hou J H. Adv Mater, 2016, 28(3): 434 − 439  doi: 10.1002/adma.v28.3

    207. [207]

      Zhang Kai(张凯), Huang Fei(黄飞), Cao Yong(曹镛). Acta Polymerica Sinica(高分子学报), 2017, (9): 1400 − 1414  doi: 10.11777/j.issn1000-3304.2017.17075

    208. [208]

      Zhang K, Gao K, Xia R X, Wu Z H, Sun C, Cao J M, Qian L, Li W Q, Liu S Y, Huang F, Peng X B, Ding L M, Yip H L, Cao Y. Adv Mater, 2016, 28(24): 4817  doi: 10.1002/adma.v28.24

    209. [209]

      Zhang K, Xia R X, Fan B B, Liu X, Wang Z, Dong S, Yip H L, Ying L, Huang F, Cao Y. Adv Mater, 2018, 30(36): 1803166  doi: 10.1002/adma.201803166

    210. [210]

      Xia Y J, Wang L, Deng X Y, Li D Y, Zhu X H, Cao Y. Appl Phys Lett, 2006, 89(8): 081106  doi: 10.1063/1.2338017

    211. [211]

      Gong X, Tong M H, Xia Y J, Cai W Z, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J. Science, 2009, 325(5948): 1665 − 1667  doi: 10.1126/science.1176706

    212. [212]

      Zhong Z M, Li K, Zhang J X, Ying L, Xie R H, Yu G, Huang F, Cao Y. ACS Appl Mater Interfaces, 2019, 11(15): 14208 − 14214  doi: 10.1021/acsami.9b02092

    213. [213]

      Zhong Z M, Bu L J, Zhu P, Xiao T, Fan B B, Ying L, Lu G H, Yu G, Huang F, Cao Y. ACS Appl Mater Interfaces, 2019, 11(8): 8350 − 8356  doi: 10.1021/acsami.8b20981

    214. [214]

      Zhang L Z, Yang T B, Shen L, Fang Y J, Dang L, Zhou N J, Guo X G, Hong Z R, Yang Y, Wu H B, Huang J S, Liang Y Y. Adv Mater, 2015, 27(41): 6496 − 6503  doi: 10.1002/adma.201502267

    215. [215]

      Qian G, Qi J, Wang Z Y. J Mater Chem, 2012, 22(25): 12867 − 12873  doi: 10.1039/c2jm30868a

    216. [216]

      Qi J, Ni L, Yang D Z, Zhou X K, Qiao W Q, Li M, Ma D G, Wang Z Y. J Mater Chem C, 2014, 2(13): 2431 − 2438  doi: 10.1039/c3tc32271h

    217. [217]

      Wang W B, Zhang F J, Du M D, Li L L, Zhang M, Wang K, Wang Y S, Hu B, Fang Y, Huang J S. Nano Lett, 2017, 17(3): 1995 − 2002  doi: 10.1021/acs.nanolett.6b05418

    218. [218]

      Xiong S X, Li L L, Qin F, Mao L, Luo B W, Jiang Y Y, Li Z F, Huang J S, Zhou Y H. ACS Appl Mater Interfaces, 2017, 9(10): 9176 − 9183  doi: 10.1021/acsami.6b16788

    219. [219]

      Hu X W, Yi C, Wang M, Hsu C H, Liu S J, Zhang K, Zhong C M, Huang F, Gong X, Cao Y. Adv Energy Mater, 2014, 4(15): 1400378  doi: 10.1002/aenm.201400378

    220. [220]

      Li L L, Zhang F J, Wang J, An Q S, Sun Q Q, Wang W B, Zhang J, Teng F. Sci Rep, 2015, 5: 9181  doi: 10.1038/srep09181

    221. [221]

      Li L L, Zhang F J, Wang W B, An Q S, Wang J, Sun Q Q, Zhang M. ACS Appl Mater Interfaces, 2015, 7(10): 5890 − 5897  doi: 10.1021/acsami.5b00041

    222. [222]

      Forrest S R. Nature, 2004, 428: 911 − 918  doi: 10.1038/nature02498

    223. [223]

      Drury C J, Mutsaers C M J, Hart C M, Leeuw D M. Appl Phys Lett, 1998, 73(1): 108 − 110  doi: 10.1063/1.121783

    224. [224]

      Tsumura A, Koezuka H, Ando T. Appl Phys Lett, 1986, 49(18): 1210 − 1212  doi: 10.1063/1.97417

    225. [225]

      Hu W P, Liu Y Q, Zhu D B. Physics, 1997, 26(11): 649 − 654

    226. [226]

      Yao J J, Yu C M, Liu Z T, Luo H W, Yang Y, Zhang G X, Zhang D Q. J Am Chem Soc, 2016, 138(1): 173 − 185  doi: 10.1021/jacs.5b09737

    227. [227]

      Osaka I, McCullough R D. Acc Chem Res, 2008, 41(9): 1202 − 1214  doi: 10.1021/ar800130s

    228. [228]

      Sirringhaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K, Langeveld-Voss B M W, Spiering A J H, Janssen R A J, Meijer E W, Herwig P, de Leeuw D M. Nature, 1999, 401: 685 − 688  doi: 10.1038/44359

    229. [229]

      Lei T, Cao Y, Fan Y, Liu C J, Yuan S C, Pei J. J Am Chem Soc, 2011, 133(16): 6099 − 6101  doi: 10.1021/ja111066r

    230. [230]

      Lei T, Dou J H, Ma Z M, Yao C H, Liu C J, Wang J Y, Pei J. J Am Chem Soc, 2012, 134(49): 20025 − 20028  doi: 10.1021/ja310283f

    231. [231]

      Bürgi L, Turbiez M, Pfeiffer R, Bienewald F, Kirner H, Winnewisser C. Adv Mater, 2008, 20(11): 2217 − 2224  doi: 10.1002/(ISSN)1521-4095

    232. [232]

      Chen H, Guo Y L, Yu G, Zhao Y, Zhang J, Gao D, Liu H, Liu Y Q. Adv Mater, 2012, 24(34): 4618 − 4622  doi: 10.1002/adma.v24.34

    233. [233]

      Li J, Zhao Y, Tan H S, Guo Y L, Di C A, Yu G, Liu Y Q, Lin M, Lim S H, Zhou Y H, Su H B, Ong B S. Sci Rep, 2012, 2: 754  doi: 10.1038/srep00754

    234. [234]

      Ni Z J, Wang H L, Dong H L, Dang Y F, Zhao Q, Zhang X T, Hu W P. Nat Chem, 2019, 11: 271 − 277  doi: 10.1038/s41557-018-0200-y

    235. [235]

      Lei T, Dou J H, Cao X Y, Wang J Y, Pei J. J Am Chem Soc, 2013, 135(33): 12168 − 12717  doi: 10.1021/ja403624a

    236. [236]

      Lei T, Xia X, Wang J Y, Liu C J, Pei J. J Am Chem Soc, 2014, 136(5): 2135 − 2141  doi: 10.1021/ja412533d

    237. [237]

      Chen Z H, Zheng Y, Yan H, Facchetti A. J Am Chem Soc, 2009, 131(1): 8 − 9  doi: 10.1021/ja805407g

    238. [238]

      Chen H J, Guo Y L, Mao Z P, Yu G, Huang J Y, Zhao Y, Liu Y Q. Chem Mater, 2013, 25(18): 3589 − 3596  doi: 10.1021/cm401130n

    239. [239]

      Zhao Z Y, Yin Z H, Chen H J, Zheng L P, Zhu C G, Zhang L, Tan S T, Wang H L, Guo Y L, Tang Q X, Liu Y Q. Adv Mater, 2017, 29(4): 1602410  doi: 10.1002/adma.v29.4

    240. [240]

      Shi Y Q, Gou H, Qin M C, Zhao J Y, Wang H, Wang Y L, Facchetti A, Lu X H, Guo X G. Adv Mater, 2018, 30(10): 1705745  doi: 10.1002/adma.v30.10

    241. [241]

      Wang Y F, Guo H, Harbuzaru A, Uddin M A, Arrechea-Marcos I, Ling S H, Yu Y W, Tang Y M, Sun H L, Navarrete J T L, Ortiz R P, Woo H Y, Guo X G. J Am Chem Soc, 2018, 140(19): 6095 − 6108  doi: 10.1021/jacs.8b02144

    242. [242]

      Brédas J L, Beljonne D, Coropceanu V, Cornil J. Chem Rev, 2004, 104(11): 4971 − 5003  doi: 10.1021/cr040084k

    243. [243]

      Coropceanu V, Cornil J, da Silva Filho D A, Olivier Y, Silbey R, Brédas J L. Chem Rev, 2007, 107(4): 926 − 952  doi: 10.1021/cr050140x

    244. [244]

      Dong H L, Fu X L, Liu J, Wang Z R, Hu W P. Adv Mater, 2013, 25(43): 6158 − 6183  doi: 10.1002/adma.201302514

    245. [245]

      Kang I, Yun H J, Chung D S, Kwon S K, Kim Y H. J Am Chem Soc, 2013, 135(40): 14896 − 14899  doi: 10.1021/ja405112s

    246. [246]

      Lee J, Han A R, Yu H, Shin T J, Yang C, Oh J H. J Am Chem Soc, 2013, 135(25): 9540 − 9547  doi: 10.1021/ja403949g

    247. [247]

      Mei J G, Bao Z N. Chem Mater, 2014, 26(1): 604 − 615  doi: 10.1021/cm4020805

    248. [248]

      Dou J H, Zheng Y Q, Lei T, Zhang S D, Wang Z, Zhang W B, Wang J Y, Pei J. Adv Funct Mater, 2014, 24(40): 6270 − 6278  doi: 10.1002/adfm.v24.40

    249. [249]

      Luo H W, Yu C M, Liu Z T, Zhang G X, Geng H, Yi Y P, Broch K, Hu Y Y, Sadhanala A, Jiang L, Qi P L, Cai Z X, Sirringhaus H, Zhang D Q. Sci Adv, 2016, 2(5): 1600076  doi: 10.1126/sciadv.1600076

    250. [250]

      Zhu M J, Pan S, Wang Y, Tang P, Qiu F, Lin Z Q, Peng J. Angew Chem Int Ed, 2018, 57(28): 8644 − 8648  doi: 10.1002/anie.v57.28

    251. [251]

      Dong H, Hu W. Acc Chem Res, 2016, 49(11): 2435 − 2443  doi: 10.1021/acs.accounts.6b00368

    252. [252]

      Lee B H, Hsu B B Y, Patel S N, Labram J, Luo C, Bazan G C, Heeger A J. Nano Lett, 2016, 16(1): 314 − 319  doi: 10.1021/acs.nanolett.5b03868

    253. [253]

      Luo C, Kyaw A K K, Perez L A, Patel S, Wang M, Grimm B, Bazan G C, Kramer E J, Heeger A J. Nano Lett, 2014, 14(5): 2764 − 2771  doi: 10.1021/nl500758w

    254. [254]

      Dong H L, Li H X, Wang E J, Wei Z M, Xu W, Hu W P, Yan S K. Langmuir, 2008, 24(23): 13241 − 13244  doi: 10.1021/la8026094

    255. [255]

      Wittmann J C, Smith P. Nature, 1991, 352(6334): 414 − 417  doi: 10.1038/352414a0

    256. [256]

      Pan G Z, Chen F, Hu L, Zhang K J, Dai J M, Zhang F P. Adv Funct Mater, 2015, 25(32): 5126 − 5133  doi: 10.1002/adfm.v25.32

    257. [257]

      Lin F-J, Guo C, Chuang WT, Wang CL, Wang Q, Liu H, Hsu C S, Jiang L. Adv Mater, 2017, 29(34): 1606987  doi: 10.1002/adma.v29.34

    258. [258]

      Jiang Y Y, Chen J Y, Sun Y L, Li Q Y, Cai Z X, Li J Y, Guo Y L, Hu W P, Liu Y Q. Adv Mater, 2019, 31(2): 1805761  doi: 10.1002/adma.201805761

    259. [259]

      Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J. Nat Energy, 2018, 3(7): 560 − 566  doi: 10.1038/s41560-018-0153-9

    260. [260]

      Zheng Y Q, Yao Z F, Lei T, Dou J H, Yang C Y, Zou L, Meng X Y, Ma W, Wang J Y, Pei J. Adv Mater, 2017, 29(42): 1701072  doi: 10.1002/adma.201701072

    261. [261]

      Yao Z F, Zheng Y Q, Li Q Y, Lei T, Zhang S, Zou L, Liu H Y, Dou J H, Lu Y, Wang J Y, Gu X D, Pei J. Adv Mater, 2019, 31(7): 1806747

    262. [262]

      Lei Y, Deng P, Zhang Q, Xiong Z, Li Q, Mai J, Lu X, Zhu X, Ong B S. Adv Funct Mater, 2018, 28(15): 1706372  doi: 10.1002/adfm.v28.15

    263. [263]

      Wang C L, Dong H L, Jiang L, Hu W P. Chem Soc Rev, 2018, 47(2): 422 − 500  doi: 10.1039/C7CS00490G

    264. [264]

      Kim D H, Han J T, Park Y D, Jang Y, Cho J H, Hwang M, Cho K. Adv Mater, 2006, 18(6): 719 − 723  doi: 10.1002/(ISSN)1521-4095

    265. [265]

      Dong Huanli(董焕丽), Yan Qingqing(燕青青), Hu Wenping(胡文平). Acta Polymerica Sinica(高分子学报), 2017, (8): 1246 − 1260  doi: 10.11777/j.issn1000-3304.2017.17127

    266. [266]

      Dong H L, Jiang S D, Jiang L, Liu Y L, Li H X, Hu W P, Wang E J, Yan S K, Wei Z M, Xu W, Gong X. J Am Chem Soc, 2009, 131(47): 17315 − 17320  doi: 10.1021/ja907015p

    267. [267]

      Liu Y, Dong H L, Jiang S D, Zhao G Y, Shi Q Q, Tan J H, Jiang L, Hu W P, Zhan X W. Chem Mater, 2013, 25(13): 2649 − 2655  doi: 10.1021/cm4011579

    268. [268]

      Xiao C Y, Zhao G Y, Zhang A D, Jiang W, Janssen R A J, Li W W, Hu W P, Wang Z H. Adv Mater, 2015, 27(34): 4963 − 4968  doi: 10.1002/adma.201502617

    269. [269]

      Ma Z Y, Geng Y H, Yan D H. Polymer, 2007, 48(1): 31 − 34  doi: 10.1016/j.polymer.2006.10.034

    270. [270]

      Xiao X L, Wang Z B, Hu Z J, He T B. J Phys Chem B, 2010, 114(22): 7452 − 7460  doi: 10.1021/jp911525d

    271. [271]

      Liu C F, Wang Q L, Tian H K, Liu J, Geng Y H, Yan D H. Polymer, 2013, 54(3): 1251 − 1258  doi: 10.1016/j.polymer.2012.12.054

    272. [272]

      Liu C F, Sui A G, Wang Q L, Tian H K, Geng Y H, Yan D H. Polymer, 2013, 54(13): 3150 − 3155  doi: 10.1016/j.polymer.2013.04.025

    273. [273]

      Yan Qingqing(燕青青), Yao Yifan(姚奕帆), Dong Huanli(董焕丽), Hu Wenping(胡文平). Scientia Sinica Chimica(中国科学-化学), 2016, 46(10): 1007 − 1022

    274. [274]

      Wegner G. Z Naturforsch B, 1969, 24(7): 824 − 826  doi: 10.1515/znb-1969-0708

    275. [275]

      Yao Y F, Dong H L, Liu F, Russell T P, Hu W P. Adv Mater, 2017, 29(29): 1701251  doi: 10.1002/adma.201701251

    276. [276]

      Xue M Q, Wang Y, Wang X W, Huang X C, Ji J H. Adv Mater, 2015, 27(39): 5923 − 5929  doi: 10.1002/adma.201502511

    277. [277]

      Swager T M. Acc Chem Res, 1998, 31(5): 201 − 207  doi: 10.1021/ar9600502

    278. [278]

      McQuade D T, Pullen A E, Swager T M. Chem Rev, 2000, 100(7): 2537 − 2574  doi: 10.1021/cr9801014

    279. [279]

      Thomas S W, Joly G D, Swager T M. Chem Rev, 2007, 107(4): 1339 − 1386  doi: 10.1021/cr0501339

    280. [280]

      Feng X L, Liu L B, Wang S, Zhu D B. Chem Soc Rev, 2010, 39(7): 2411 − 2419  doi: 10.1039/b909065g

    281. [281]

      Zhu C L, Liu L B, Yang Q, Lv F T, Wang S. Chem Rev, 2012, 112(8): 4687 − 4735  doi: 10.1021/cr200263w

    282. [282]

      Yuan H X, Wang B, Lv F T, Liu L B, Wang S. Adv Mater, 2014, 26(40): 6978 − 6982  doi: 10.1002/adma.v26.40

    283. [283]

      Zhang Jiangyan(张江艳), Yuan Huanxiang(袁焕祥), Zhu Chunlei(朱春雷), Liu Libing(刘礼兵), Lv Fengting(吕凤婷), Wang Shu(王树). Sci China Chem(中国科学: 化学), 2016, 46(2): 153 − 162

    284. [284]

      Jiang Y F, McNeill J. Chem Rev, 2017, 117(2): 838 − 859  doi: 10.1021/acs.chemrev.6b00419

    285. [285]

      Jiang Y Y, Pu K Y. Acc Chem Res, 2018, 51(8): 1840 − 1849  doi: 10.1021/acs.accounts.8b00242

    286. [286]

      Ho H A, Najari A, Leclerc M. Acc Chem Res, 2008, 41(2): 168 − 178  doi: 10.1021/ar700115t

    287. [287]

      Wu W, Bazan G C, Liu B. Chem, 2017, 2(6): 760 − 790  doi: 10.1016/j.chempr.2017.05.002

    288. [288]

      Duan X R, Liu L B, Feng F, Wang S. Acc Chem Res, 2010, 43(2): 260 − 270  doi: 10.1021/ar9001813

    289. [289]

      Feng F D, Wang H Z, Han L L, Wang S. J Am Chem Soc, 2008, 130(34): 11338 − 11343  doi: 10.1021/ja8011963

    290. [290]

      Feng F D, Liu L B, Wang S. Nat Protoc, 2010, 5(7): 1255 − 1264  doi: 10.1038/nprot.2010.79

    291. [291]

      Yang Q, Dong Y, Wu W, Zhu C L, Chong H, Lu J Y, Yu D H, Liu L, Lv F T, Wang S. Nat Commun, 2012, 3: 1206  doi: 10.1038/ncomms2209

    292. [292]

      Miranda O R, You C C, Phillips R, Kim I B, Ghosh P S, Bunz U H F, Rotello V M. J Am Chem Soc, 2007, 129(32): 9856 − 9857  doi: 10.1021/ja0737927

    293. [293]

      De M, Rana S, Akpinar H, Miranda O R, Arvizo R R, Bunz U H F, Rotello V M. Nat Chem, 2009, 1(6): 461  doi: 10.1038/nchem.334

    294. [294]

      Liu Xingfen(刘兴奋), Cai Xiaohui(蔡小慧), Huang Yanqin(黄艳琴), Shi Lin(石琳), Fan Quli(范曲立), Huang Wei(黄维). Acta Chimica Sinica(化学学报), 2014, 72: 440 − 446  doi: 10.7503/cjcu20130583

    295. [295]

      Sun Pengfei(孙鹏飞), Fan Quli(范曲立), Liu Lulin (柳露林), Deng Weixing(邓卫星), Lu Xiaomei(卢晓梅), Huang Wei(黄维). Acta Polymerica Sinica(高分子学报), 2014, (12): 1629 − 1634

    296. [296]

      Bajaj A, Miranda O R, Phillips R, Kim I B, Jerry D J, Bunz U H F, Rotello V M. J Am Chem Soc, 2010, 132(3): 1018 − 1022  doi: 10.1021/ja9061272

    297. [297]

      Feng X L, Yang G M, Liu L B, Lv F T, Yang Q, Wang S, Zhu D B. Adv Mater, 2012, 24(5): 637 − 641  doi: 10.1002/adma.201102026

    298. [298]

      Wu C F, Jin Y H, Schneider T, Burnham D R, Smith P B, Chiu D T. Angew Chem Int Ed, 2010, 49(49): 9436 − 9440  doi: 10.1002/anie.201004260

    299. [299]

      Wu C F, Hansen S J, Hou Q O, Yu J B, Zeigler M, Jin Y H, Burnham D R, McNeill J D, Olson J M, Chiu D T. Angew Chem Int Ed, 2011, 50(15): 3430 − 3434  doi: 10.1002/anie.201007461

    300. [300]

      Miao Q, Xie C, Zhen X, Lyu Y, Duan H, Li uX, Jokerst J V, Pu K. Nat Biotechnol, 2017, 35(11): 1102 − 1110  doi: 10.1038/nbt.3987

    301. [301]

      Lu L D, Rininsland F H, Wittenburg S K, Achyuthan K E, McBranch D W, Whitten D G. Langmuir, 2005, 21(22): 10154 − 10159  doi: 10.1021/la046987q

    302. [302]

      Xing C F, Xu Q L, Tang H W, Liu L, Wang S. J Am Chem Soc, 2009, 131(36): 13117 − 13124  doi: 10.1021/ja904492x

    303. [303]

      Yuan H X, Chong H, Wang B, Zhu C, Liu L, Yang Q, Lv F, Wang S. J Am Chem Soc, 2012, 134(32): 13184 − 13187  doi: 10.1021/ja304986t

    304. [304]

      Bai H T, Yuan H X, Nie C Y, Wang B, Lv F T, Liu L B, Wang S. Angew Chem Int Ed, 2015, 54(45): 13208 − 13213  doi: 10.1002/anie.201504566

    305. [305]

      Zhou L, Lv F, Liu L, Shen G, Yan X, Bazan G C, Wang S. Adv Mater, 2018, 30(10): 1704888  doi: 10.1002/adma.v30.10

    306. [306]

      Di C A, Xu W, Zhu D B. Natl Sci Rev, 2016, 3(3): 269 − 271  doi: 10.1093/nsr/nww040

    307. [307]

      Kim J Y, Jung J H, Lee D E, Joo J. Synth Met, 2002, 126(2-3): 311 − 316  doi: 10.1016/S0379-6779(01)00576-8

    308. [308]

      Bubnova O, Khan Z U, Malti A, Braun S, Fahlman M, Berggren M, Crispin X. Nat Mater, 2011, 10: 429 − 433  doi: 10.1038/nmat3012

    309. [309]

      Yao Q, Chen L D, Zhang W Q, Liufu S C, Chen X H. ACS Nano, 2010, 4(4): 2445 − 2451  doi: 10.1021/nn1002562

    310. [310]

      Kim G H, Shao L, Zhang K, Pipe K P. Nat Mater, 2013, 12: 719 − 723  doi: 10.1038/nmat3635

    311. [311]

      He M, Qiu F, Lin Z Q. Energy Environ Sci, 2013, 6(5): 1352 − 1361  doi: 10.1039/c3ee24193a

    312. [312]

      Shi W, Qu S Y, Chen H Y, Chen Y L, Yao Q, Chen L D. Angew Chem Int Ed, 2018, 57(27): 8037 − 8042  doi: 10.1002/anie.201802681

    313. [313]

      Meng Q, Jiang Q, Cai K, Chen L. Org Electron, 2019, 64: 79 − 85  doi: 10.1016/j.orgel.2018.10.010

    314. [314]

      Qu S Y, Yao Q, Wang L M, Hua J L, Chen L D. Polymer, 2018, 136: 149 − 156  doi: 10.1016/j.polymer.2017.12.048

    315. [315]

      Qu S Y, Wang M D, Chen Y L, Yao Q, Chen L D. RSC Adv, 2018, 8(59): 33855 − 33863  doi: 10.1039/C8RA07297C

    316. [316]

      Meng Q F, Cai K F, Du Y, Chen L D. J Alloy Comp, 2019, 778: 163 − 169  doi: 10.1016/j.jallcom.2018.10.381

    317. [317]

      Holdcroft G E, Underhill A E. Synth Met, 1985, 10(6): 427 − 434  doi: 10.1016/0379-6779(85)90200-0

    318. [318]

      Vicente R, Ribas J, Cassoux P, Valade L. Synth Met, 1986, 13(4): 265 − 280  doi: 10.1016/0379-6779(86)90188-8

    319. [319]

      Sun Y, Sheng P, Di C, Jiao F, Xu W, Qiu D, Zhu D. Adv Mater, 2012, 24(7): 932 − 937  doi: 10.1002/adma.201104305

    320. [320]

      Jin W L, Liu L Y, Yang T, Shen H G, Zhu J, Xu W, Li S Z, Li Q, Chi L F, Di C A, Zhu D B. Nat Commun, 2018, 9: 3586  doi: 10.1038/s41467-018-05999-4

    321. [321]

      Zhang F J, Zang Y P, Huang D Z, Di C A, Zhu D B. Nat Commun, 2015, 6: 8356  doi: 10.1038/ncomms9356

    322. [322]

      Zhang Q, Sun Y M, Xu W, Zhu D B. Macromolecules, 2014, 47(2): 609 − 615  doi: 10.1021/ma4020406

    323. [323]

      Zhang F J, Zang Y P, Huang D Z, Di C A, Gao X K, Sirringhaus H, Zhu D B. Adv Funct Mater, 2015, 25(20): 3004 − 3012  doi: 10.1002/adfm.201404397

    324. [324]

      Hu D H, Liu Q, Tisdale J, Lei T, Pei J, Wang H, Urbas A, Hu B. ACS Nano, 2015, 9(5): 5208 − 5213  doi: 10.1021/acsnano.5b00589

    325. [325]

      Wang C L, Dong H L, Hu W P, Liu Y Q, Zhu D B. Chem Rev, 2012, 112(4): 2208 − 2267  doi: 10.1021/cr100380z

    326. [326]

      Shi K, Zhang F J, Di C A, Yan T W, Zou Y, Zhou X, Zhu D B, Wang J Y, Pei J. J Am Chem Soc, 2015, 137(22): 6979 − 6982  doi: 10.1021/jacs.5b00945

    327. [327]

      Ma W, Shi K, Wu Y, Lu Z Y, Liu H Y, Wang J Y, Pei J. ACS Appl Mater Interfaces, 2016, 8(37): 24737 − 24743  doi: 10.1021/acsami.6b06899

    328. [328]

      Kiefer D, Giovannitti A, Sun H, Biskup T, Hofmann A, Koopmans M, Cendra C, Weber S, Anton Koster L J, Olsson E, Rivnay J, Fabiano S, McCulloch I, Müller C. ACS Energy Lett, 2018, 3(2): 278 − 285  doi: 10.1021/acsenergylett.7b01146

    329. [329]

      Yang C Y, Jin W L, Wang J, Ding Y F, Nong S Y, Shi K, Lu Y, Dai Y Z, Zhuang F D, Lei T, Di C A, Zhu D B, Wang J Y, Pei J. Adv Mater, 2018, 30(43): 1802850  doi: 10.1002/adma.201802850

    330. [330]

      Zhang Q, Sun Y M, Xu W, Zhu D B. Energy Environ Sci, 2012, 5(11): 9639 − 9644  doi: 10.1039/c2ee23006b

    331. [331]

      Shi K, Lu Z, Yu Z, Liu H, Zou Y, Yang C, Dai Y, Lu Y, Wang J, Pei J. Adv Electron Mater, 2017, 3(11): 1700164  doi: 10.1002/aelm.201700164

    332. [332]

      Meredith G, Vandusen J, Williams D. Macromolecules, 1982, 15(5): 1385 − 1389  doi: 10.1021/ma00233a033

    333. [333]

      Li S J, Yang Z, Wang P, Kang H, Wu W, Ye C, Yang M J, Yang X Z. Macromolecules, 2002, 35(11): 4314 − 4316  doi: 10.1021/ma011598d

    334. [334]

      Tang H D, Luo J D, Qin J G. Kang H, Ye C Macromol Rapid Commun, 2000, 21(16): 1125 − 1129  doi: 10.1002/(ISSN)1521-3927

    335. [335]

      Luo J D, Qin J G, Kang H, Ye C. Chem Mater, 2001, 13(3): 927 − 931  doi: 10.1021/cm000692q

    336. [336]

      Li Z, Qin J G, Li S J, Ye C, Luo J, Cao Y. Macromolecules, 2002, 35(24): 9232 − 9235  doi: 10.1021/ma020769r

    337. [337]

      Wang Y, Wang C S, Wang X J, Guo Y, Xie B, Cui Z C, Liu L Y, Xu L, Zhang D M, Yang B. Chem Mater, 2005, 17(6): 1265 − 1268  doi: 10.1021/cm048482r

    338. [338]

      Dalton L R, Sullivan P A, Ba le, D H. Chem Rev, 2010, 110(1): 25 − 55  doi: 10.1021/cr9000429

    339. [339]

      Robinson B H, Dalton L R. J Phys Chem A, 2000, 104(20): 4785 − 4795  doi: 10.1021/jp993873s

    340. [340]

      Li Z, Li Q Q, Qin J G. Polym Chem, 2011, 2(12): 2723 − 2740  doi: 10.1039/c1py00205h

    341. [341]

      Wu W B, Qin J G, Li Z. Polymer, 2013, 54(17): 4351 − 4382  doi: 10.1016/j.polymer.2013.05.039

    342. [342]

      Tang R L, Li Z. Chem Rec, 2017, 17(1): 71 − 89  doi: 10.1002/tcr.201600065

    343. [343]

      Li Z, Zeng Q, Li Z, Dong S, Zhu Z, Li Q, Ye C, Di C, Liu Y, Qin J. Macromolecules, 2006, 39(24): 8544 − 8546  doi: 10.1021/ma061854s

    344. [344]

      Chen P, Li Z. Chinese J Polym Sci, 2017, 35(7): 793 − 798  doi: 10.1007/s10118-017-1949-y

    345. [345]

      Li Z, Wu W, Li Q, Yu G, Xiao L, Liu Y, Ye C, Qin J, Li Z. Angew Chem Int Ed, 2010, 49(15): 2763 − 2767  doi: 10.1002/anie.200906946

    346. [346]

      Gao J, Cui Y, Yu J, Lin W, Wang Z, Qian G. J Mater Chem, 2011, 21(9): 3197 − 3203  doi: 10.1039/c0jm03367g

    347. [347]

      He Y L, Chen L, Zhang H, Chen Z, Huo F Y, Li B, Zhen Z, Liu X H, Bo S H. J Mater Chem C, 2018, 6(5): 1031 − 1037  doi: 10.1039/C7TC04928E

    348. [348]

      Tang R L, Zhou S, Xiang W D, Xie Y J, Chen H, Peng Q, Yu G, Liu B W, Zeng H Y, Li Q Q, Li Z. J Mater Chem C, 2015, 3(17): 4545 − 4552  doi: 10.1039/C5TC00182J

    349. [349]

      Tang R L, Zhou S M, Chen Z Y, Yu G, Peng Q, Zeng H Y, Guo G C, Li Q Q, Li Z. Chem Sci, 2017, 8(1): 340 − 347  doi: 10.1039/C6SC02956F

    350. [350]

      Wu W B, Tang R L, Li Q Q, Li Z. Chem Soc Rev, 2015, 44(12): 3997 − 4022  doi: 10.1039/C4CS00224E

    351. [351]

      Li Z, Lam J W Y, Dong Y, Dong Y, Tang B Z, Qin A, Ye C. Polym Prepr, 2004, 45: 833 − 834

    352. [352]

      Li Z, Qin A J, Lam J W Y, Dong Y P, Dong Y Q, Ye C, Williams I D, Tang B Z. Macromolecules, 2006, 39(4): 1436 − 1442  doi: 10.1021/ma051924f

    353. [353]

      Xie J D, Hu L H, Shi W F, Deng X X, Cao Z Q, Shen Q S. J Polym Sci, Part B: Polym Phys, 2008, 46(12): 1140 − 1148  doi: 10.1002/(ISSN)1099-0488

    354. [354]

      Li Z, Yu G, Hu P, Ye C, Liu Y, Qin J, Li Z. Macromolecules, 2009, 42(5): 1589 − 1596  doi: 10.1021/ma8025223

    355. [355]

      Yin Xiuyang(殷修扬), Tang Runli(唐润理), Li Qianqian(李倩倩), Li Zhen(李振). Scientia Sinica Chimica(中国科学-化学), 2016, 46(5): 429 − 437

    356. [356]

      Wu W B, Huang L J, Fu Y J, Ye C, Qin J G, Li Z. Sci Bull, 2013, 58(22): 2753 − 2761  doi: 10.1007/s11434-013-5938-4

    357. [357]

      Liu G C, Chen P Y, Tang R L, Li Z. Sci China Chem, 2016, 59(12): 1561 − 1567  doi: 10.1007/s11426-016-0250-5

    358. [358]

      Chen J, Dong C-L, Zhao D M, Huang Y-C, Wang X X, Samad L, Dang L N, Shearer M, Shen S H, Guo L J. Adv Mater, 2017, 29(21): 1606198  doi: 10.1002/adma.201606198

    359. [359]

      Yu F T, Wang Z Q, Zhang S C, Ye H N, Kong K Y, Gong X Q, Hua J L, Tian H. Adv Funct Mater, 2018, 28(47): 1804512  doi: 10.1002/adfm.v28.47

    360. [360]

      Lu H, Hu R, Bai H T, Chen H, Lv F T, Liu L B, Wang S, Tian H. ACS Appl Mater Interfaces, 2017, 9(12): 10355 − 10359  doi: 10.1021/acsami.7b00069

    361. [361]

      Hu Z C, Zhang X, Yin Q W, Liu X C, Jiang X F, Chen Z M, Yang X Y, Huang F, Cao Y. Nano Energy, 2019, 60: 775 − 783  doi: 10.1016/j.nanoen.2019.04.027

    362. [362]

      Hu Z C, Wang Z F, Zhang X, Tang H R, Liu X C, Huang F, Cao Y. iScience, 2019, 13: 33 − 42  doi: 10.1016/j.isci.2019.02.007

    363. [363]

      Su W P, Schrieffer J R, Heeger A J. Phys Rev Lett, 1979, 42(25): 1698 − 1701  doi: 10.1103/PhysRevLett.42.1698

    364. [364]

      Chung T C, Moraes F, Flood J D, Heeger A J. Phys Rev B, 1984, 29(4): 2341 − 2343  doi: 10.1103/PhysRevB.29.2341

    365. [365]

      Heeger A J, Kivelson S, Schrieffer J R, Su W P. Rev Mod Phys, 1988, 60(3): 781 − 850  doi: 10.1103/RevModPhys.60.781

    366. [366]

      Mazumdar S, Dixit S N. Phys Rev Lett, 1983, 51(4): 292 − 295  doi: 10.1103/PhysRevLett.51.292

    367. [367]

      Takayama H, Lin-Liu Y R, Maki K. Phys Rev B, 1980, 21(6): 2388 − 2393  doi: 10.1103/PhysRevB.21.2388

    368. [368]

      Su Z B, Yu L. Commun Theor Phys, 1983, 2(4): 1203 − 1218  doi: 10.1088/0253-6102/2/4/1203

    369. [369]

      Su Z B, Yu L. Commun Theor Phys, 1983, 2(5): 1323 − 1339  doi: 10.1088/0253-6102/2/5/1323

    370. [370]

      Su Z B, Yu L. Commun Theor Phys, 1983, 2(5): 1341 − 1356  doi: 10.1088/0253-6102/2/5/1341

    371. [371]

      Su W P, Schrieffer J R. Proc Nat Acad Sci USA, 1980, 77(10): 5626 − 5629  doi: 10.1073/pnas.77.10.5626

    372. [372]

      Ito H, Terai A, Ono Y, Wada Y. J Phys Soc Jpn, 1984, 53(10): 3520 − 3531  doi: 10.1143/JPSJ.53.3520

    373. [373]

      Sun X, Wu C Q, Shen X C. Solid State Commun, 1985, 56(12): 1039 − 1041  doi: 10.1016/0038-1098(85)90866-X

    374. [374]

      Soos Z, Ramasesha S. Phys Rev B, 1984, 29(10): 5410 − 5422  doi: 10.1103/PhysRevB.29.5410

    375. [375]

      Wu C Q, Sun X, Nasu K. Phys Rev Lett, 1987, 59(7): 831 − 834  doi: 10.1103/PhysRevLett.59.831

    376. [376]

      Ohmine I, Karplus M, Schulten K. J Chem Phys, 1978, 68(5): 2298 − 2318  doi: 10.1063/1.436000

    377. [377]

      Shuai Z, Peng Q. Phys Rep, 2014, 537(4): 123 − 156  doi: 10.1016/j.physrep.2013.12.002

    378. [378]

      Peng Q, Yi Y P, Shuai Z G, Shao J S. J Am Chem Soc, 2007, 129(30): 9333 − 9339  doi: 10.1021/ja067946e

    379. [379]

      Zhang T, Peng Q, Quan CY, Nie H, Xie Y, Zhao Z, Tang B, Shuai Z. Chem Sci, 2016, 7(8): 5573 − 5580  doi: 10.1039/C6SC00839A

    380. [380]

      Brédas J L, Calbert J P, da Silva Filho D A, Cornil J. Proc Natl Acad Sci USA, 2002, 99(9): 5804 − 5809  doi: 10.1073/pnas.092143399

    381. [381]

      Sokolov AN, Atahan-Evrenk S, Mondal R, Akkerman H B, Sánchez-Carrera R S, Granados-Focil S, Schrier J, Mannsfeld S C B, Zoombelt A P, Bao Z, Aspuru-Guzik A. Nat Commun, 2011, 2: 437  doi: 10.1038/ncomms1451

    382. [382]

      Nan G, Yang X, Wang L, Shuai Z G, Zhao Y. Phys Rev B, 2009, 79: 115203  doi: 10.1103/PhysRevB.79.115203

    383. [383]

      Sakanoue T, Sirringhaus H. Nat Mater, 2010, 9: 736 − 740  doi: 10.1038/nmat2825

    384. [384]

      Ostroverkhova O. Chem Rev, 2016, 116(22): 13279 − 13412  doi: 10.1021/acs.chemrev.6b00127

    385. [385]

      Jiang Y Q, Geng H, Shi W, Peng Q, Zheng X Y, Shuai Z G. J Phys Chem Lett, 2014, 5(13): 2267 − 2273  doi: 10.1021/jz500825q

    386. [386]

      Ren X, Bluzek M J, Hanifi D A, Schulzetenberg A, Wu Y, Kim C H, Zhang Z, Johns J E, Salleo A, Fratini S, Troisi A, Douglas C J, Frisbie C D. Adv Electron Mater, 2017, 3(4): 1700018  doi: 10.1002/aelm.201700018

    387. [387]

      Yuen J D, Menon R, Coates N E, Namdas E B, Cho S, Hannahs S T, Moses D, Heeger A J. Nat Mater, 2009, 8: 572 − 575  doi: 10.1038/nmat2470

    388. [388]

      Dhoot A S, Wang G M, Moses D, Heeger A J. Phys Rev Lett, 2006, 96(24): 246403  doi: 10.1103/PhysRevLett.96.246403

    389. [389]

      Kronemeijer A J, Huisman E H, Katsouras I, van Hal P A, Geuns T C T, Blom P W M, van der Molen S J, de Leeuw D M. Phys Rev Lett, 2010, 105(15): 156604  doi: 10.1103/PhysRevLett.105.156604

    390. [390]

      Rodin A S, Fogler M M. Phys Rev Lett, 2010, 105(10): 106801  doi: 10.1103/PhysRevLett.105.106801

    391. [391]

      Asadi K, Kronemeijer A J, Cramer T, Koster J A L, Blom P W M, de Leeuw D M. Nat Commun, 2013, 4: 1710  doi: 10.1038/ncomms2708

    392. [392]

      Oberhofer H, Reuter K, Blumberger J. Chem Rev, 2017, 117(15): 10319 − 10357  doi: 10.1021/acs.chemrev.7b00086

    393. [393]

      Jiang Y Q, Zhong X X, Shi W, Peng Q, Geng H, Zhao Y, Shuai Z G. Nanoscale Horiz, 2016, 1(1): 53 − 59  doi: 10.1039/C5NH00054H

    394. [394]

      Kalinowski J, Cocchi M, Virgili D, Di Marco P, Fattori V. Chem Phys Lett, 2003, 380(5-6): 710 − 715  doi: 10.1016/j.cplett.2003.09.086

    395. [395]

      Francis T L, Mermer Ö, Veeraraghavan G, Wohlgenannt M. New J Phys, 2004, 6: 185  doi: 10.1088/1367-2630/6/1/185

    396. [396]

      Yao Y, Si W, Wu C Q. Synth Met, 2011, 161(7-8): 632 − 636  doi: 10.1016/j.synthmet.2010.11.049

    397. [397]

      Si W, Yao Y, Hou X Y, Wu C Q. Org Electron, 2014, 15(3): 824 − 828  doi: 10.1016/j.orgel.2013.12.021

  • 加载中
    1. [1]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    2. [2]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    3. [3]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    4. [4]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    5. [5]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    6. [6]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    7. [7]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    8. [8]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    9. [9]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    10. [10]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

    11. [11]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012

    12. [12]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

    13. [13]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    14. [14]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    15. [15]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    16. [16]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    17. [17]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    18. [18]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    19. [19]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    20. [20]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

Metrics
  • PDF Downloads(0)
  • Abstract views(1509)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return