Citation: En-bin Zhou, Li-quan Wang, Jia-ping Lin, Jun-li Zhu, Lei Du, Shi-feng Deng, Jia-bin Gu, Liang-shun Zhang. Design of Low-viscosity Silicon-containing Arylacetylene Resins by a Combination Screening Method[J]. Acta Polymerica Sinica, ;2019, 50(12): 1322-1330. doi: 10.11777/j.issn1000-3304.2019.19104 shu

Design of Low-viscosity Silicon-containing Arylacetylene Resins by a Combination Screening Method

  • It is challenging to improve the processing performance of silicon-containing arylacetylene resins while ensuring their excellent thermal properties. In this work, we presented a combination screening method for designing low-viscosity silicon-containing arylacetylene resins. We first defined the dichlorosilane as the gene for combination in terms of the chemical synthesis routes. The genes are combined with alkynyl benzene to generate a series of candidate resins. Then the viscosity, density, and thermal decomposition temperature of the candidate resins were calculated by molecular connection index method. Two optimal resins (ESA-e and ESA-2e) with higher index were screened through defining an index––a ratio of thermal decomposition temperature to viscosity. To validate the screened results, molecular dynamics simulation was used to evaluate the properties of the two optimal resins. In addition, a comparision between the optimal resins and a tranditional resin (PSA-H) were made. It was found that the viscosity of the optimal resins is lower than that of PSA-H and that of ESA-2e is the lowest. However, the glass transition temperature of the optimal resins decreased. To improve both the thermal properties and processing performance of the resins, the optimal resins were blended with PSA-H. The viscosity, thermal properties, and mechanical properties of the blends were examined by MD simulation. The results suggested that both the thermal properties and processing performance of the resins can be balanced via blending. The work provided a rapid method for the design and development of new resins. Moreover, the combination screening method can be generalized to the design of other advanced polymers.
  • 加载中
    1. [1]

      Itoh M, Inoue K, Iwata K, Mitsuzuka M, Kakigano T. Macromolecules, 1997, 30(4): 694 − 701  doi: 10.1021/ma961081f

    2. [2]

      Itoh M, Iwata K, Ishikawa J I, Sukawa H, Kimura H, Okita K. J Polym Sci, Part A: Polym Chem, 2001, 39(15): 2658 − 2669  doi: 10.1002/(ISSN)1099-0518

    3. [3]

      Jiang Huan(姜欢), Deng Shifeng(邓诗峰), Ruan Xiangzheng(阮湘政). Polymer Materials Science & Engineering(高分子材料科学与工程), 2017, 33(11): 18 − 21

    4. [4]

      Gao Jinmiao(高金淼), Qi Huimin(齐会民), Zhang Jian(张健), Huang Farong(黄发荣), Du Lei(杜磊). New Chemical Materials(化工新型材料), 2008, 36(12): 45 − 47  doi: 10.3969/j.issn.1006-3536.2008.12.015

    5. [5]

      Gao Fei(高飞), Wang Fan(王帆), Zhang Lingling(张玲玲). Journal of Wuhan University of Technology(武汉理工大学学报), 2009, 31(21): 9 − 12  doi: 10.3963/j.issn.1671-4431.2009.21.003

    6. [6]

      Du Fengke(杜峰可), Yuan Qiaolong(袁荞龙), Huang Farong(黄发荣). Acta Polymerica Sinica(高分子学报), 2018, (3): 410 − 418  doi: 10.11777/j.issn1000-3304.2017.17099

    7. [7]

      Wang Shiheng(王世恒), Zhang Wen(张雯), Guo Chaoxia(郭朝霞). Acta Polymerica Sinica(高分子学报), 2017, 8(8): 1366 − 1373  doi: 10.11777/j.issn1000-3304.2017.16364

    8. [8]

    9. [9]

      Randic M, Razinger M. J Chem Inf Model, 1995, 35(1): 140 − 147  doi: 10.1021/ci00023a021

    10. [10]

      Hall L H, Mohney B, Kier L B. J Chem Inf Model, 1991, 31(1): 76 − 82  doi: 10.1021/ci00001a012

    11. [11]

      Kier L B, Hall L H, Frazer J W. J Math Chem, 1991, 7(1): 229 − 241  doi: 10.1007/BF01200825

    12. [12]

      Mijović J, Zhang H. J Phys Chem B, 2004, 108(108): 2557 − 2563  doi: 10.1021/jp036181j

    13. [13]

      Car R, Parrinello M. Phys Rev Lett, 1985, 55(22): 2471  doi: 10.1103/PhysRevLett.55.2471

    14. [14]

      Ding L, Davidchack R L, Pan J. J Mech Behav Biomed Mater, 2012, 5(1): 224 − 230  doi: 10.1016/j.jmbbm.2011.09.002

    15. [15]

      Komarov P V, Yu-Tsung C, Shih-Ming C, Khalatur P G, Reineker P. Macromolecules, 2007, 40(22): 8104 − 8113  doi: 10.1021/ma070702+

    16. [16]

      Lees A W, Edwards S F. J Phys C: Solid State Phys, 1972, 5(15): 1921 − 1928  doi: 10.1088/0022-3719/5/15/006

    17. [17]

      Xu P, Lin J, Zhang L. J Phys Chem C, 2017, 121(50): 28194 − 28203  doi: 10.1021/acs.jpcc.7b10455

    18. [18]

      Andersen H C. J Chem Phys, 1980, 72(4): 2384 − 2393  doi: 10.1063/1.439486

    19. [19]

      Tack J L, Ford D M. J Mol Graph Model, 2008, 26(8): 1269 − 1275  doi: 10.1016/j.jmgm.2007.12.001

    20. [20]

      Yan T, Burnham C J, Pópolo M G D, Voth G A. J Phys Chem C, 2016, 108(32): 11877 − 11881

    21. [21]

      Xu Z, Lin J, Wang L Tian X. Polym Chem, 2016, 7: 3783 − 3811  doi: 10.1039/C6PY00535G

    22. [22]

      Zhang Q, Lin J, Wang L, Xu Z. Prog Polym Sci, 2017, 75: 1 − 30  doi: 10.1016/j.progpolymsci.2017.04.003

    23. [23]

      Jiang T, Lin J, Wang L. Langmuir, 2013, 29: 12298 − 12306  doi: 10.1021/la403098p

    24. [24]

      Zhu X, Wang L, Lin J. Macromolecules, 2011, 44: 8314 − 8323  doi: 10.1021/ma2014035

    25. [25]

      Makov G, Payne M C. Phys Rev B, 1995, 51(7): 4014 − 4024  doi: 10.1103/PhysRevB.51.4014

    26. [26]

      Makov G, Shah R, Payne M C. Phys Rev B, 1996, 53(23): 15513 − 11526  doi: 10.1103/PhysRevB.53.15513

    27. [27]

      Leeuw S W D, Perram J W, Smith E R. Proc R Soc A-Math Phys Eng Sci, 1980, A(2): 27 − 56

    28. [28]

      Verstraete F, Porras D, Cirac J I. Phys Rev Lett, 2004, 93(22): 227205 − 227215  doi: 10.1103/PhysRevLett.93.227205

    29. [29]

      Sun H, Ren P, Fried J R. Comput Theor Polym Sci, 1998, 8(1-2): 229 − 246  doi: 10.1016/S1089-3156(98)00042-7

    30. [30]

      Walker M W, Orin D E. J Dyn Syst Meas Control, 1982, 104(3): 205 − 211  doi: 10.1115/1.3139699

    31. [31]

      Fanourgakis G S, Medina J S, Prosmiti R. J Phys Chem A, 2012, 116(10): 2564 − 2572  doi: 10.1021/jp211952y

    32. [32]

      Hoover W G, Evans D J, Hickman R B. Phys Rev A, 1980, 22(4): 1690 − 1697  doi: 10.1103/PhysRevA.22.1690

    33. [33]

      Theodorou D N, Suter U W. Macromolecules, 1985, 18(7): 1467 − 1478  doi: 10.1021/ma00149a018

    34. [34]

      Theodorou D N, Suter U W. Macromolecules, 1986, 19(1): 139 − 154  doi: 10.1021/ma00155a022

    35. [35]

      Zhang Lingling(张玲玲), Gao Fei(高飞), Zhou Wei(周围), Zhang Jian(张健), Huang Farong(黄发荣), Du Lei(杜磊). The Chinese Journal of Process Engineering(过程工程学报), 2009, 9(3): 574 − 579  doi: 10.3321/j.issn:1009-606X.2009.03.028

    36. [36]

      Zhou Wei(周围), Zhang Jian(张健), Yi Guoguang(尹国光), Huang Farong(黄发荣). Petrochemical Technology(石油化工), 2007, 36(6): 618 − 622  doi: 10.3321/j.issn:1000-8144.2007.06.016

    37. [37]

      Zhao Jicheng(赵继成). Chinese Journal of Nature(自然杂志), 2014, 36(2): 89 − 104

    38. [38]

      Xiao Ruijuan(肖睿娟), Li Hong(李泓), Chen Liquan (陈立泉). Acta Physica Sinica(物理学报), 2018, 67(12): 128801 − 128801  doi: 10.7498/aps.67.128801

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    4. [4]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    5. [5]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    8. [8]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    15. [15]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    16. [16]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    17. [17]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    20. [20]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

Metrics
  • PDF Downloads(0)
  • Abstract views(119)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return