Citation: Yong-qiang Shi, Ying-feng Wang, Xu-gang Guo. Recent Progress of Imide-functionalized N-type Polymer Semiconductors[J]. Acta Polymerica Sinica, ;2019, 50(9): 873-889. doi: 10.11777/j.issn1000-3304.2019.19100 shu

Recent Progress of Imide-functionalized N-type Polymer Semiconductors

  • Corresponding author: Xu-gang Guo, guoxg@sustech.edu.cn
  • Received Date: 13 May 2019
    Revised Date: 3 June 2019

  • Polymer semiconductors have attracted substantial interests in both academia and industry, recently, attributed to their distinctive advantages, including widely-tunable chemical structure and optoelectronic property, solution processability, and mechanical flexibility. In the last decade, a great deal of efforts have been dedicated to developing P-type (hole transporting) polymer semiconductors, however the development of N-type (electron transporting) polymer analogues lags far behind compared to their P-type counterparts due to the scarcity of highly electron-deficient building blocks, accompanied steric hindrance, and synthetic barriers. In fact, high-performance N-type polymer semiconductors are essential for organic complementary logic circuits and p-n junctions, hence it is imperative to develop high-performance N-type polymer semiconductors, which hinge on the design and synthesis of new electron deficient building blocks with compact geometry and good solubilizing capability. Among various electron deficient building blocks, imide-functionalized (hetero)arenes hold the most promising structural and electronic features for enabling N-type polymer semiconductors. This account summarizes the latest progress of N-type polymers, particularly the polymers based on imide-functionalized (hetero)arenes developed by our group. These new imide-functionalized (hetero)arenes include a series of ring-fused ladder-type heteroarenes up to 5 imide groups and 15 rings in a row, which offer a remarkable platform for developing N-type polymer semiconductors with widely tunable optoelectronic property and film morphology. In addition, a series of β-position functionalized or modified bithiophene imide derivatives are also devised and synthesized. The introduction of the most electronegative fluorine atom and the substitution of thiophene with more electron deficient thiazole yield further lower-lying LUMO energy levels, which promote N-type characteristics for the polymer semiconductors in devices. This account introduces the materials design principles for N-type polymer semiconductors and elaborate the synthetic routes to the new imides and the corresponding polymer semiconductors. In addition, the N-type device performance of the polymer semiconductors based on these imide-functionalized building blocks in organic field-effect transistors (OFETs) and polymer solar cells (PSCs) are commented, and the materials structure-property correlations are elaborated. Finally, our insights into future materials innovation of N-type polymer semiconductors by inventing new imide-functionalized building blocks are provided.
  • 加载中
    1. [1]

      Chiang C K, Fincher C R, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C, MacDiarmid A G. Phys Rev Lett, 1978, 40(22): 1472 − 1472  doi: 10.1103/PhysRevLett.40.1472

    2. [2]

      Dai Shuixing(代水星), Zhan Xiaowei(占肖卫). Acta Polymerica Sinica(高分子学报), 2017, (11): 1706 − 1714  doi: 10.11777/j.issn1000-3304.2017.17214

    3. [3]

      Bin Haijun(宾海军), Li Yongfang(李永舫). Acta Polymerica Sinica(高分子学报), 2017, (9): 1444 − 1461  doi: 10.11777/j.issn1000-3304.2017.17119

    4. [4]

      Zhang J Q, Tan H S, Guo X G, Facchetti A, Yan H. Nat Energy, 2018, (3): 720 − 731

    5. [5]

      Cui Yong(崔勇), Yao Huifeng(姚惠峰), Yang Chenyi(杨晨熠), Zhang Shaoqing(张少青), Hou Jianhui(侯剑辉). Acta Polymerica Sinica(高分子学报), 2018, (2): 223 − 230  doi: 10.11777/j.issn1000-3304.2018.17297

    6. [6]

      Huang Fei (黄飞). Acta Polymerica Sinica(高分子学报), 2018, (9): 1141 − 1143  doi: 10.11777/j.issn1000-3304.2018.18181

    7. [7]

      Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y. Nat Mater, 2005, 4(11): 864 − 868  doi: 10.1038/nmat1500

    8. [8]

      Heeney M, Zhang W M, Crouch D J, Chabinyc M L, Gordeyev S, Hamilton R, Higgins S J, McCulloch I, Skabara P J, Sparrowe D, Tierney S. Chem Commun, 2007, (47): 5061 − 5063  doi: 10.1039/b712398a

    9. [9]

      Yi Z R, Wang S, Liu Y Q. Adv Mater, 2015, 27(24): 3589 − 3606  doi: 10.1002/adma.201500401

    10. [10]

      Guo X G, Facchetti A, Marks T J. Chem Rev, 2014, 114(18): 8943 − 9021  doi: 10.1021/cr500225d

    11. [11]

      Sun H L, Wang L, Wang Y F, Guo X G. Chem Eur J, 2019, 25(1): 87 − 105  doi: 10.1002/chem.v25.1

    12. [12]

      Chen H J, Guo Y L, Yu G, Zhao Y, Zhang J, Gao D, Liu H T, Liu Y Q. Adv Mater, 2012, 24(34): 4618 − 4622  doi: 10.1002/adma.v24.34

    13. [13]

      Li J, Zhao Y, Tan H S, Guo Y L, Di C A, Yu G, Liu Y Q, Lin M, Lim S H, Zhou Y H, Su H B, Ong B S. Sci Rep, 2012, (2): 754

    14. [14]

      Mei J G, Diao Y, Appleton AL, Fang L, Bao Z N. J Am Chem Soc, 2013, 135(18): 6724 − 6746  doi: 10.1021/ja400881n

    15. [15]

      Yang J, Zhao Z Y, Wang S, Guo Y L, Liu Y Q. Chem, 2018, 4(12): 2748 − 2785  doi: 10.1016/j.chempr.2018.08.005

    16. [16]

      Xu X M, Yao Y F, Shan B W, Gu X, Liu D Q, Liu J Y, Xu J B, Zhao N, Hu W P, Miao Q. Adv Mater, 2016, 28(26): 5276 − 5283  doi: 10.1002/adma.201601171

    17. [17]

      Zhao Y, Guo Y L, Liu Y Q. Adv Mater, 2013, 25(38): 5372 − 5391  doi: 10.1002/adma.201302315

    18. [18]

      Zaumseil J, Sirringhaus H. Chem Rev, 2007, 107(4): 1296 − 1323  doi: 10.1021/cr0501543

    19. [19]

      Yang Jie(杨杰), Chen Jinyang(陈金佯), Sun Yunlong(孙云龙), Shi Longxian(施龙献), Guo Yunlong(郭云龙), Wang Shuai(王帅), Liu Yunqi(刘云圻). Acta Polymerica Sinica(高分子学报), 2017, (7): 1082 − 1096  doi: 10.11777/j.issn1000-3304.2017.17020

    20. [20]

      Guo X G, Watson M D. Org Lett, 2008, 10(23): 5333 − 5336  doi: 10.1021/ol801918y

    21. [21]

      Letizia J A, Salata M R, Tribout C M, Facchetti A, Ratner M A, Marks T J. J Am Chem Soc, 2008, 130(30): 9679 − 9694  doi: 10.1021/ja710815a

    22. [22]

      Guo X G, Ortiz R P, Zheng Y, Hu Y, Noh Y Y, Baeg K J, Facchetti A, Marks T J. J Am Chem Soc, 2011, 133(5): 1405 − 1418  doi: 10.1021/ja107678m

    23. [23]

      Zhou N J, Guo X G, Ortiz R P, Harschneck T, Manley E F, Lou S J, Hartnett P E, Yu X G, Horwitz N E, Burrezo P M, Aldrich T J, López Navarrete J T, Wasielewski M R, Chen L X, Chang R P H, Facchetti A, Marks T J. J Am Chem Soc, 2015, 137(39): 12565 − 12579  doi: 10.1021/jacs.5b06462

    24. [24]

      Wang Y F, Guo H, Harbuzaru A, Uddin M A, Arrechea-Marcos I, Ling S H, Yu J W, Tang Y M, Sun H L, López Navarrete J T, Ortiz R P, Woo H Y, Guo X G. J Am Chem Soc, 2018, 140(19): 6095 − 6108  doi: 10.1021/jacs.8b02144

    25. [25]

      Shi Y Q, Guo H, Qin M C, Zhao J Y, Wang Y X, Wang H, Wang Y L, Facchetti A, Lu X H, Guo X G. Adv Mater, 2018, 30(10): 1705745  doi: 10.1002/adma.v30.10

    26. [26]

      Shi Y Q, Guo H, Qin M C, Wang Y X, Zhao J Y, Sun H L, Wang H, Wang Y L, Zhou X, Facchetti A, Lu X H, Zhou M, Guo X G. Chem Mater, 2018, 30(21): 7988 − 8001  doi: 10.1021/acs.chemmater.8b03670

    27. [27]

      Saito M, Osaka I, Suda Y, Yoshida H, Takimiya K. Adv Mater, 2016, 28(32): 6921 − 6925  doi: 10.1002/adma.201601373

    28. [28]

      Wang Y F, Guo H, Ling S H, Arrechea-Marcos I, Wang Y X, López Navarrete J T, Ortiz R P, Guo X G. Angew Chem Int Ed, 2017, 56(33): 9924 − 9929  doi: 10.1002/anie.201702225

    29. [29]

      Guo X G, Watson M D. Macromolecules, 2011, 44(17): 6711 − 6716  doi: 10.1021/ma2009063

    30. [30]

      Guo X G, Kim F S, Seger M J, Jenekhe S A, Watson M D. Chem Mater, 2012, 24(8): 1434 − 1442  doi: 10.1021/cm2034273

    31. [31]

      Dou C D, Long X J, Ding Z C, Xie Z Y, Liu J, Wang L X. Angew Chem Int Ed, 2016, 55(4): 1436 − 1440  doi: 10.1002/anie.201508482

    32. [32]

      Long X J, Gao Y, Tian H K, Dou C D, Yan D H, Geng Y H, Liu J, Wang L X. Chem Commun, 2017, 53(10): 1649 − 1652  doi: 10.1039/C6CC09684K

    33. [33]

      Yu J W, Ornelas J L, Tang Y M, Uddin M A, Guo H, Yu S M, Wang Y L, Woo H Y, Zhang S M, Xing G C, Guo X G, Huang W. ACS Appl Mater Interfaces, 2017, 9(48): 42167 − 42178  doi: 10.1021/acsami.7b11863

    34. [34]

      Osaka I, Shimawaki M, Mori H, Doi I, Miyazaki E, Koganezawa T, Takimiya K. J Am Chem Soc, 2012, 134(11): 3498 − 3507

    35. [35]

      Zhang Q Q, Kelly M A, Bauer N, You W. Accounts Chem Res, 2017, 50(9): 2401 − 2409  doi: 10.1021/acs.accounts.7b00326

    36. [36]

      Liu J, Ye G, van der Zee B, Dong J J, Qiu X K, Liu Y R, Portale G, Chiechi R C, Koster L J A. Adv Mater, 2018, 30(44): 1804290  doi: 10.1002/adma.v30.44

    37. [37]

      Liao Q G, Wang Y L, Uddin M A, Chen J H, Guo H, Shi S B, Wang Y, Woo H Y, Guo X G. ACS Macro Lett, 2018, 7(5): 519 − 524  doi: 10.1021/acsmacrolett.8b00032

    38. [38]

      Huang H, Yang L, Facchetti A, Marks T J. Chem Rev, 2017, 117(15): 10291 − 10318  doi: 10.1021/acs.chemrev.7b00084

    39. [39]

      Zhan X W, Tan Z A, Domercq B, An Z S, Zhang X, Barlow S, Li Y F, Zhu D B, Kippelen B, Marder S R. J Am Chem Soc, 2007, 129(23): 7246 − 7247  doi: 10.1021/ja071760d

    40. [40]

      Yan H, Chen Z H, Zheng Y, Newman C, Quinn J R, Dötz F, Kastler M, Facchetti A. Nature, 2009, 457(7230): 679 − 686  doi: 10.1038/nature07727

    41. [41]

      Kim F S, Guo X G, Watson M D, Jenekhe S A. Adv Mater, 2010, 22(4): 478 − 482  doi: 10.1002/adma.v22:4

    42. [42]

      Fukutomi Y, Nakano M, Hu J Y, Osaka I, Takimiya K. J Am Chem Soc, 2013, 135(31): 11445 − 11448  doi: 10.1021/ja404753r

    43. [43]

      Kang B, Kim R, Lee S B, Kwon S K, Kim Y H, Cho K. J Am Chemi Soc, 2016, 138(11): 3679 − 3686  doi: 10.1021/jacs.5b10445

    44. [44]

      Wang Y, Hasegawa T, Matsumoto H, Michinobu T. J Am Chem Soc, 2019, 141(8): 3566 − 3575  doi: 10.1021/jacs.8b12499

    45. [45]

      Fu B Y, Wang C Y, Rose B D, Jiang Y D, Chang M, Chu P H, Yuan Z B, Fuentes-Hernandez C, Kippelen B, Brédas J L, Collard D M, Reichmanis E. Chem Mater, 2015, 27(8): 2928 − 2937  doi: 10.1021/acs.chemmater.5b00173

    46. [46]

      Lei T, Cao Y, Fan Y L, Liu C J, Yuan S C, Pei J. J Am Chem Soc, 2011, 133(16): 6099 − 6101  doi: 10.1021/ja111066r

    47. [47]

      Kim G, Han A R, Lee H R, Lee J, Oh J H, Yang C. Chem Commun, 2014, 50(17): 2180 − 2183  doi: 10.1039/c3cc48013e

    48. [48]

      Yue W, Nikolka M, Xiao M F, Sadhanala A, Mcculloch I. J Mater Chem C, 2016, 4(41): 9704 − 9710  doi: 10.1039/C6TC03000A

    49. [49]

      Lei T, Dou J H, Cao X Y, Wang J Y, Pei J. J Am Chem Soc, 2013, 135(33): 12168 − 12171  doi: 10.1021/ja403624a

    50. [50]

      Lei T, Dou J H, Cao X Y, Wang J Y, Pei J. Adv Mater, 2013, 25(45): 6589 − 6593  doi: 10.1002/adma.201302278

    51. [51]

      Yan Z Q, Sun B, Li Y N. Chem Commun, 2013, 49(36): 3790 − 3792  doi: 10.1039/c3cc40531a

    52. [52]

      Dai Y Z, Ai N, Lu Y, Zheng Y Q, Dou J H, Shi K, Lei T, Wang J Y, Pei J. Chem Sci, 2016, 7(9): 5753 − 5757  doi: 10.1039/C6SC01380E

    53. [53]

      Casey A, Han Y, Fei Z P, White A J P, Anthopoulos TD, Heeney M. J Mater Chem C, 2015, 3(2): 265 − 275  doi: 10.1039/C4TC02008A

    54. [54]

      Shi S B, Wang Y X, Uddin M A, Zhou X, Guo H, Liao Q G, Zhu X C, Cheng X, Woo H Y, Guo X G. Adv Electron Mater, 2017, 3(12): 1700100  doi: 10.1002/aelm.201700100

    55. [55]

      Shi S B, Wang H, Chen P, Uddin M A, Wang Y X, Tang Y M, Guo H, Cheng X, Zhang S M, Woo H Y, Guo X G. Polym Chem, 2018, 9(28): 3873 − 3884  doi: 10.1039/C8PY00540K

    56. [56]

      Shi S B, Wang H, Uddin M A, Yang K, Su M Y, Bianchi L, Chen P, Cheng X, Guo H, Zhang S M, Woo H Y, Guo X G. Chem Mater, 2019, 31(5): 1808 − 1817  doi: 10.1021/acs.chemmater.9b00118

    57. [57]

      Wang H, Huang J, Uddin M A, Liu B, Chen P, Shi S B, Tang Y M, Xing G C, Zhang S M, Woo H Y, Guo H, Guo X G. ACS Appl Mater Interfaces, 2019, 11(10): 10089 − 10098  doi: 10.1021/acsami.8b22457

    58. [58]

      Chen J H, Yang K, Zhou X, Guo X G. Chem-Asian J, 2018, 13(18): 2587 − 2600  doi: 10.1002/asia.v13.18

    59. [59]

      Chen J H, Zhang X H, Wang G, Uddin M A, Tang Y M, Wang Y L, Liao Q G, Facchetti A, Marks T J, Guo X G. J Mater Chem C, 2017, 5(37): 9559 − 9569  doi: 10.1039/C7TC02903A

    60. [60]

      Wang Y F, Yan Z L, Guo H, Uddin M A, Ling S H, Zhou X, Su H M, Dai J F, Woo H Y, Guo X G. Angew Chem Int Ed, 2017, 56(48): 15304 − 15308  doi: 10.1002/anie.201708421

    61. [61]

      Wang Y F, Yan Z L, Uddin M A, Zhou X, Yang K, Tang Y M, Liu B, Shi Y Q, Sun H L, Deng A Y, Dai J F, Woo H Y, Guo X G. Solar RRL, 2019. 1900107  doi: 10.1002/solr.201900107

    62. [62]

      Chen W, Wang Y F, Pang G T, Koh C W, Djurišić A B, Wu Y H, Tu B, Liu F Z, Chen R, Woo H Y, Guo X G, He Z B. Adv Funct Mater, 2019, 1808855

    63. [63]

      Sun H L, Tang Y M, Guo H, Uddin M A, Ling S H, Wang R Z, Wang Y F, Zhou X, Woo H Y, Guo X G. Solar RRL, 2019, 3(2): 1800265  doi: 10.1002/solr.v3.2

    64. [64]

      Sun H L, Tang Y M, Koh C W, Ling S H, Wang R Z, Yang K, Yu J W, Shi Y Q, Wang Y F, Woo H Y, Guo X G. Adv Mater, 2019, 31(15): 1807220  doi: 10.1002/adma.v31.15

    65. [65]

      Lei T, Wang J Y, Pei J. Chem Mater, 2014, 26(1): 594 − 603  doi: 10.1021/cm4018776

    66. [66]

      Lei T, Cao Y, Zhou X, Peng Y, Bian J, Pei J. Chem Mater, 2012, 24(10): 1762 − 1770  doi: 10.1021/cm300117x

  • 加载中
    1. [1]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    2. [2]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    3. [3]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    4. [4]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    5. [5]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    6. [6]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    7. [7]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    8. [8]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    9. [9]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    10. [10]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    11. [11]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    12. [12]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    13. [13]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    14. [14]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    15. [15]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    16. [16]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    17. [17]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    18. [18]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    19. [19]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    20. [20]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

Metrics
  • PDF Downloads(0)
  • Abstract views(135)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return