Citation: Lin-xia Fu, Yi-yu Feng, Wei Feng. Photo-thermal Storage and Release of an Azobenzene-grafted Polynorbornene Film[J]. Acta Polymerica Sinica, ;2019, 50(12): 1272-1279. doi: 10.11777/j.issn1000-3304.2019.19092 shu

Photo-thermal Storage and Release of an Azobenzene-grafted Polynorbornene Film

  • Corresponding author: Wei Feng, weifeng@tju.edu.cn
  • Received Date: 5 May 2019
    Revised Date: 10 May 2019
    Available Online: 18 June 2019

  • The poor film-formation ability of azobenzene carbon thermal storage materials with graphene as templates limits their practical application due to the rigid structure of graphene sp2 hybridization. In this study, we addressed this issue by employing polynorbornene as the templelate given that polymers much outperform graphene in terms of film formation, flexibility, and self-supporting property. Herein, azobenzene attached with two methoxy and two carboxyl groups was firstly synthesized to regulate the photoisomerization and energy density. Next, polynorbornene (PNB) templates with various molecular weights were prepared by ring-opening metathesis polymerization (ROMP) with different molar ratios between monomer and catalyst. Azobenzene was then grafted onto the side chain of PNB through amidation reaction to afford azobenzene-grafted polynorbornenes with diverse grafting densities. Experimental results showed that with the increasing molecular weight of PNB template, the graft density of azobenzene rose first but subsequently fell. As for the film formation ability, PNB-Azo-500 with the highest graft density (36%) could hardly form an intact film, while PNB-Azo-900 exhibited the best film formation ability despite a slightly lower graft density (31%). Therefore, PNB-Azo-900 was involved in the following measurements. Tensile testing indicated that the PNB-Azo-900 film possessed good flexibility and self-supporting behavior by achieving a strain of 120% and a tensile strength of 21.5 MPa. Photoisomerization and energy density was characterized by UV-absorption spectroscopy and differential scanning calorimetry, respectively, which suggested that the film effectuated energy storage under 365 nm UV-light irradiation and the energy density reached 34 Wh/kg. The stored energy could be released as heat when the film was expoed to 550 nm green light or heat source stimulation, during which the highest temperature was 1.25 °C. Such excellent energy storage and light responsiveness endowed this PBN film with potential applications in the field of space thermal management.
  • 加载中
    1. [1]

      Perez M, Perez R. IEA-SHCP-Newsletter, 2015, 62(11): 4 − 6

    2. [2]

      Kucharski T J, Tian Y, Akbulatov S, Boulatov R. Energy Environ Sci, 2011, 4(11): 4449 − 4472  doi: 10.1039/c1ee01861b

    3. [3]

      Davis S J, Caldeira K, Matthews H D. Science, 2010, 329(5997): 1330 − 1333  doi: 10.1126/science.1188566

    4. [4]

      Cook T R, Dogutan D K, Reece S Y, Surendranath Y, Teets T S, Nocera D G. Chem Rev, 2010, 110(11): 6474 − 6502  doi: 10.1021/cr100246c

    5. [5]

      Wang Z, Tong Z, Ye Q, Hu H, Nie X, Yan C, Shang W, Song C, Wu J, Wang J, Bao H, Tao P, Deng T. Nat Commun, 2017, 8(1): 1478 − 1486  doi: 10.1038/s41467-017-01618-w

    6. [6]

      Zhang Z, Liao M, Lou H, Hu Y, Sun X, Peng H. Adv Mater, 2018, 30(13): 1704261 − 1704279  doi: 10.1002/adma.v30.13

    7. [7]

      Zhitomirsky D, Cho E, Grossman J C. Adv Energy Mater, 2016, 6(6): 1501999 − 1502006

    8. [8]

      Dreos A, Wang Z, Udmark J. Adv Energy Mater, 2018, 8(18): 1703401 − 1703409  doi: 10.1002/aenm.v8.18

    9. [9]

      Kolpak A M, Grossman J C. Nano Lett, 2011, 11(8): 3156 − 3162  doi: 10.1021/nl201357n

    10. [10]

      Zhao X, Feng Y, Qin C, Yang W, Si Q, Feng W. ChemSusChem, 2017, 10(7): 1395 − 1404  doi: 10.1002/cssc.v10.7

    11. [11]

      Qing Xin(卿鑫), Lu Jiuan(吕久安), Yu Yanlei(俞燕蕾). Acta Polymerica Sinica(高分子学报), 2017, (11): 1679 − 1705

    12. [12]

      Jonesii G, Reinhardt T E, Bergmark W R. Sol Energy, 1978, 20(3): 241 − 248  doi: 10.1016/0038-092X(78)90103-2

    13. [13]

      Olmsted J, Lawrence J, Yee G G. Sol Energy, 1983, 30(3): 271 − 274  doi: 10.1016/0038-092X(83)90156-1

    14. [14]

      Anders L, Anna R, Kasper M P. Tetrahedron Lett, 2015, 56(12): 1457 − 1465  doi: 10.1016/j.tetlet.2015.01.187

    15. [15]

      Kucharski T J, Ferralis N, Kolpak A M, Zheng J O, Nocera D G, Grossman J C. Nat Chem, 2014, 6(5): 441 − 447  doi: 10.1038/nchem.1918

    16. [16]

      Feng Y, Liu H, Luo W, Liu E, Zhao N, Yoshino K, Feng W. Sci Rep, 2013, 3: 3260 − 3267  doi: 10.1038/srep03260

    17. [17]

      Cho E N, Zhitomirsky D, Han G D, Liu Y, Grossman J C. ACS Appl Mater Interfaces, 2017, 9(10): 8679 − 8687  doi: 10.1021/acsami.6b15018

    18. [18]

      Yang W, Feng Y, Si Q, Yan Q, Long P, Dong L, Feng W. J Mater Chem A, 2019, 7(1): 97 − 106  doi: 10.1039/C8TA05333B

    19. [19]

      Saydjari A K, Weis P, Wu S. Adv Energy Mater, 2017, 7(3): 1601619 − 1601622

    20. [20]

      Han G D, Park S S, Liu Y, Zhitomirsky D, Cho E, Dincă M, Grossman J C. J Mater Chem A, 2016, 4(41): 16157 − 16165  doi: 10.1039/C6TA07086H

    21. [21]

      Zhitomirsky D, Grossman J C. ACS Appl Mater Interfaces, 2016, 8(39): 26319 − 26325  doi: 10.1021/acsami.6b08034

    22. [22]

      Merino E. Chem Soc Rev, 2011, 40(7): 3835 − 3853  doi: 10.1039/c0cs00183j

    23. [23]

      Zhang K, Zha Y, Peng B, Chen Y, Tew G N. J Am Chem Soc, 2013, 135(43): 15994 − 15997  doi: 10.1021/ja407381f

    24. [24]

      Nguyen S B T, Johnson L K, Grubbs R H. J Am Chem Soc, 1992, 114(10): 3974 − 3975  doi: 10.1021/ja00036a053

    25. [25]

      Zhang Zhitao(张智涛), Zhang Ye(张晔), Li Yiming(李一明), Peng Huisheng(彭慧胜). Acta Polymerica Sinica(高分子学报), 2016, (10): 1284 − 1299  doi: 10.11777/j.issn1000-3304.2016.16185

    26. [26]

      Zhang Shuo(张朔), Cai Cunhua(蔡春华), Huang Qijing(黄琦婧), Lin Jiaping(林嘉平), Xu Zhanwen(许占文). Acta Polymerica Sinica(高分子学报), 2018, (1): 109 − 118  doi: 10.11777/j.issn1000-3304.2018.17223

  • 加载中
    1. [1]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    2. [2]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    5. [5]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    8. [8]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    9. [9]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    10. [10]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    12. [12]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    13. [13]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    14. [14]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    15. [15]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    16. [16]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    17. [17]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    18. [18]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    19. [19]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    20. [20]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

Metrics
  • PDF Downloads(0)
  • Abstract views(125)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return