Citation: Tan An, Hui Yu, Li-jun Xu, Zhi-kang Xu, Ling-shu Wan. Modification of Microporous Polymer Membranes via Surface Co-deposition and the Separation Performances[J]. Acta Polymerica Sinica, ;2019, 50(12): 1298-1304. doi: 10.11777/j.issn1000-3304.2019.19086 shu

Modification of Microporous Polymer Membranes via Surface Co-deposition and the Separation Performances

  • Corresponding author: Ling-shu Wan, lswan@zju.edu.cn
  • Received Date: 25 April 2019
    Revised Date: 10 June 2019

  • Surface deposition systems such as dopamine and tannic acid have received great attention in recent years and have been widely applied in surface modification of polymer separation membranes. It is generally accepted that only polyphenols containing catechol structure can effectively form surface coatings. This paper reports a novel surface co-deposition systems based on ferulic acid and Cu2+. It should be noted that ferulic acid, a monophenol, contains only one phenolic hydroxyl group, without acatechol structure. Co-deposition coatings were prepared on various substrates, and the effects of composition and deposition time were investigated. Results indicate that the ferulic acid/Cu2+ system is able to form coating layer on most substrates. However, the coatings cannot be effectively formed on highly hydrophilic susbtrates such as silica, glass, and quartz. Microporous polypropylene membrane with surface coatings was prepared under optimal deposition conditions, and the surface structure and properties were characterized by field emission scanning electron microscopy (FE-SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), zeta potential analyzer, and water contact angle measurement. The modified membranes were applied to the separation of oil-in-water emulsions and dye adsorption. The results show that the modified membrane becomes hydrophilic and strongly negatively charged, while the surface porous structure changes little. The modified membranes can be used for the separation of various oil-in-water emulsions with high separation efficiency. It is also demonstrated that the membranes can be used repeatedly in the separation of emulsions. Furthermore, the coatings endow the membranes with strongly negatively charged surfaces, and hence the modified membranes show great potential in the adsorption of positively charged dyes. The results may introduce a novel monophenol-based system for surface deposition and greatly expand the types of surface deposition phenols.
  • 加载中
    1. [1]

      Lee H, Scherer N F, Messersmith P B. Proc Natl Acad Sci, 2006, 103(35): 12999 − 13003  doi: 10.1073/pnas.0605552103

    2. [2]

      Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318(5849): 426 − 430  doi: 10.1126/science.1147241

    3. [3]

      Yu J, Kan Y J, Rapp M, Danner E, Wei W, Das S, Miller D R, Chen Y F, Waite J H, Israelachvili J N. Proc Natl Acad Sci, 2013, 110(39): 15680 − 15685  doi: 10.1073/pnas.1315015110

    4. [4]

      Ryu J, Ku S H, Lee H, Park C B. Adv Funct Mater, 2010, 20(13): 2132 − 2139  doi: 10.1002/adfm.v20:13

    5. [5]

      Guo L Q, Liu Q, Li G L, Shi J B, Liu J Y, Wang T, Jiang G B. Nanoscale, 2012, 4(19): 5864 − 5867  doi: 10.1039/c2nr31547e

    6. [6]

      Xia N N, Xiong X M, Wang J H, Rong M Z, Zhang M Q. Chem Sci, 2016, 7(4): 2736 − 2742  doi: 10.1039/C5SC03483C

    7. [7]

      Tang Anqi(唐安琪), Lu Jingyu(路景驭), Feng Weilin(冯炜林), Zhang Peibin(张培斌), Zhu Liping(朱利平). Acta Polymerica Sinica(高分子学报), 2018, (12): 1524 − 1531  doi: 10.11777/j.issn1000-3304.2018.18109

    8. [8]

      Jiang J, Zhu L, Zhu L, Zhang H, Zhu B, Xu Y. ACS Appl Mater Interfaces, 2013, 5(24): 12895 − 12904  doi: 10.1021/am403405c

    9. [9]

      Shen H, Guo J, Wang H, Zhao N, Xu J. ACS Appl Mater Interfaces, 2015, 7(10): 5701 − 5708  doi: 10.1021/am507416y

    10. [10]

      Ma L, Cheng C, He C, Nie C, Deng J, Sun S, Zhao C. ACS Appl Mater Interfaces, 2015, 7(47): 26050 − 26062  doi: 10.1021/acsami.5b09634

    11. [11]

      Zhu J, Uliana A, Wang J, Yuan S, Li J, Tian M, Simoens K, Volodin A, Lin J, Bernaerts K, Zhang Y, van der Bruggen B. J Mater Chem A, 2016, 4(34): 13211 − 13222  doi: 10.1039/C6TA05661J

    12. [12]

      Peng D, Wang S, Tian Z, Wu X, Wu Y, Wu H, Xin Q, Chen J, Cao X, Jiang Z. J Membr Sci, 2017, 522: 351 − 362  doi: 10.1016/j.memsci.2016.09.040

    13. [13]

      Yang H C, Zhong W, Hou J, Chen V, Xu Z K. J Membr Sci, 2017, 523: 1 − 7  doi: 10.1016/j.memsci.2016.09.044

    14. [14]

      Zhang W, Ying Y, Ma J, Guo X, Huang H, Liu D, Zhong C. J Membr Sci, 2017, 527: 8 − 17  doi: 10.1016/j.memsci.2017.01.001

    15. [15]

      Ren Y, Peng D, Wu H, Yang L, Wu X, Wu Y, Wang S, Jiang Z. Chem Eng Sci, 2019, 195: 230 − 238  doi: 10.1016/j.ces.2018.11.055

    16. [16]

      An Yunpeng(安云鹏), Zhang Xinning(张歆宁), Yang Haocheng(杨皓程), Yang Xi(杨熙), Xu Zhikang(徐志康). Acta Polymerica Sinica(高分子学报), 2017, (7): 1105 − 1112  doi: 10.11777/j.issn1000-3304.2017.16344

    17. [17]

      Drynan J W, Clifford M N, Obuchowicz J, Kuhnert N. Nat Prod Rep, 2010, 27(3): 417 − 462  doi: 10.1039/b912523j

    18. [18]

      Ejima H, Richardson J J, Liang K, Best J P, van Koeverden M P, Such G K, Cui J, Caruso F. Science, 2013, 341(6142): 154 − 157  doi: 10.1126/science.1237265

    19. [19]

      Jiang R J, Yan S J, Tian L M, Xu S A, Xin Z R, Luan S F, Yin J H, Ren L Q, Zhao J. Chinese J Polym Sci, 2018, 36(5): 576 − 583  doi: 10.1007/s10118-018-2032-z

    20. [20]

      Barrett D G, Sileika T S, Messersmith P B. Chem Commun, 2014, 50(55): 7265 − 7268  doi: 10.1039/C4CC02961E

    21. [21]

      Yu H, Zhong Q Z, Liu T G, Qiu W Z, Wu B H, Xu Z K, Wan L S. Langmuir, 2019, 35(10): 3643 − 3650  doi: 10.1021/acs.langmuir.8b03914

    22. [22]

      Zhang Z E, Yao S D, Lin W Z, Wang W F, Jin Y Z, Lin N Y. Free Rad Res, 1998, 29(1): 13 − 16  doi: 10.1080/10715769800300021

    23. [23]

      Bento-Silva A, Patto M C V, Bronze M D. Food Chem, 2018, 246: 360 − 378  doi: 10.1016/j.foodchem.2017.11.012

    24. [24]

      Yang J, Li H N, Chen Z X, He A, Zhong Q Z, Xu Z K. J Mater Chem A, 2019, 7(13): 7907 − 7917  doi: 10.1039/C9TA00575G

    25. [25]

      Wan L S, Li J W, Ke B B, Xu Z K. J Am Chem Soc, 2012, 134(1): 95 − 98  doi: 10.1021/ja2092745

    26. [26]

      Ou Y, Lv C J, Yu W, Mao Z W, Wan L S, Xu Z K. ACS Appl Mater Interfaces, 2014, 6(24): 22400 − 22407  doi: 10.1021/am506419z

    27. [27]

      Chen S H, Wu B H, Fu J C, Wang G J, Wan L S, Xu Z K. Chinese J Polym Sci, 2018, 36(7): 880 − 887  doi: 10.1007/s10118-018-2113-z

  • 加载中
    1. [1]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    2. [2]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    3. [3]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    9. [9]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    10. [10]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    13. [13]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    14. [14]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    15. [15]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    16. [16]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    19. [19]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    20. [20]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

Metrics
  • PDF Downloads(0)
  • Abstract views(114)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return