Citation: Rong Wang, Xin-kun Shen, Yan Hu, Kai-yong Cai. Surface/Interface Design of Medical Materials and Their Interactions with Cells[J]. Acta Polymerica Sinica, ;2019, 50(9): 863-872. doi: 10.11777/j.issn1000-3304.2019.19085 shu

Surface/Interface Design of Medical Materials and Their Interactions with Cells

  • Corresponding author: Kai-yong Cai, Kaiyong_cai@cqu.edu.cn
  • Received Date: 25 April 2019
    Revised Date: 5 June 2019

  • Under healthy conditions, cells/tissues can function normally in their natural microenvironment due to the large amount of biomolecules herein. However, the normal cell/tissue microenvironment will be disrupted after certain pathological events due to the loss and damage associated with certain biological entities, and the disrupted microenvironment is usually accompanied by abnormal biological signals. Therefore, when designing biomaterials , one of the primary considerations is to restore the healthy cell/tissue microenvironment at the tissue-biomaterial interface and reconstruct the original biological structures in situ by mimicking human tissues, which is of critical importance to the total repair of the disease site. However, most of the existing biomaterials are biologically inert and lack interaction with the host. To improve the biocompatibility and biofunctionality of the substrate materials and to enhance their biomimeticity, the surface modification technology has gained increasing interest in recent decades. The rational modification of the tissue-biomaterial interface can improve beneficial interaction between the substrate material, while still preserving the physical properties of the material that are favorable for certain applications. Based on our previous study on cell/tissue biological and pathological environment, our group has carried out a lot research on the development of new biofunctional interfaces using polymer-based ligands or functional moieties, of which properties could be tailored according to the specific characteristics of particular microenvironment. The as-developed biomaterials could fulfill a variety of roles including osteogenic promotion, gene transfection, antibacterial and antitumor applications. It was also confirmed that these polymer-modified materials can autonomously interact with the biological tissues and execute the designed biological functions in a highly responsive manner. With the advances in synthesis chemistry and processing technology, new biomimetic materials with better fineness and structural precision will attract greater interest in related areas. In this paper, we will summarize the relevant research work in recent years and discuss those existing challenges.
  • 加载中
    1. [1]

      Wegst U G, Bai H, Saiz E, Tomsia A P, Ritchie R O. Nat Mater, 2015, 14: 23 − 36  doi: 10.1038/nmat4089

    2. [2]

      Stevens M M, George J H. Science, 2005, 310(5751): 1135 − 1138  doi: 10.1126/science.1106587

    3. [3]

      Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri S M, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin M R. Chem Soc Rev, 2016, 45: 1457 − 501  doi: 10.1039/C5CS00798D

    4. [4]

      Hanahan D, Coussens L M. Cancer Cell, 2012, 21: 309 − 322  doi: 10.1016/j.ccr.2012.02.022

    5. [5]

      Lai M, Cai K, Hu Y, Zhang Y, Li L, Luo Z, Hou Y, Li J, Ding X, Chen X. J Biomed Mater Res A, 2013, 101: 653 − 66

    6. [6]

      Shen X, Hu Y, Xu G, Chen W, Xu K, Ran Q, Ma P, Zhang Y, Li J, Cai K. ACS Appl Mater Interfaces, 2014, 6: 16426 − 164  doi: 10.1021/am5049338

    7. [7]

      Li X, Huang Q, Elkhooly TA, Liu Y, Wu H, Feng Q, Liu L, Fang Y, Zhu W, Hu T. Biomed Mater, 2018, 13: 045013  doi: 10.1088/1748-605X/aabe33

    8. [8]

      Cai K, Lai M, Yang W, Hu R, Xin R, Liu Q, Sung KL. Acta Biomater, 2010, 6: 2314 − 21  doi: 10.1016/j.actbio.2009.11.034

    9. [9]

      Elias C N, Oshida Y, Lima J H, Muller C A. J Mech Behav Biomed Mater, 2008, 1: 234 − 242  doi: 10.1016/j.jmbbm.2007.12.002

    10. [10]

      Xu K, Shen X, Chen W, Mu C, Jiang C, Zhao Y, Cai K. J Mater Chem B, 2016, 4: 1797 − 1810  doi: 10.1039/C5TB02391B

    11. [11]

      Shen X, Ma P, Hu Y, Xu G, Zhou J, Cai K. Colloid Surf B, 2015, 127: 221 − 32  doi: 10.1016/j.colsurfb.2015.01.048

    12. [12]

      Chen X, Cai K, Lai M, Zhao L, Tang L. Adv Eng Mater, 2012, 14: B216 − B223  doi: 10.1002/adem.v14.5

    13. [13]

      Lai M, Hermann C D, Cheng A, Olivares-Navarrete R, Gittens RA, Bird MM, Walker M, Cai Y, Cai K, Sandhage K H, Schwartz Z, Boyan B D. J Biomed Mater Res A, 2015, 103: 564 − 73  doi: 10.1002/jbm.v103.2

    14. [14]

      Gittens R A, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R, Schwartz Z, Sandhage K H, Boyan B D. Biomaterials, 2011, 32: 3395 − 403  doi: 10.1016/j.biomaterials.2011.01.029

    15. [15]

      Tang J, Peng R, Ding J. Biomaterials, 2010, 31: 2470 − 2476  doi: 10.1016/j.biomaterials.2009.12.006

    16. [16]

      Yang W, Xi X, Shen X, Liu P, Hu Y, Cai K. J Biomed Mater Res A, 2014, 102: 3598 − 3608  doi: 10.1002/jbm.a.35021

    17. [17]

      Arima Y, Iwata H. Biomaterials, 2007, 28: 3074 − 3082  doi: 10.1016/j.biomaterials.2007.03.013

    18. [18]

      Cai K, Frant M, Bossert J, Hildebrand G, Liefeith K, Jandt K D. Colloid Surf B, 2006, 50: 1 − 8  doi: 10.1016/j.colsurfb.2006.03.016

    19. [19]

      Lin M, Mao S, Wang J, Xing J, Wang Y, Cai K, Luo Y. Biomaterials, 2018, 162: 170 − 182  doi: 10.1016/j.biomaterials.2018.01.036

    20. [20]

      Gu Y, Du J, Si M, Mo J, Qiao S, Lai H. J Biomed Mater Res A, 2013, 101: 748 − 754

    21. [21]

      Lotz E, Berger M, Schwartz Z, Boyan B. Acta Biomater, 2018, 68: 296 − 307  doi: 10.1016/j.actbio.2017.12.039

    22. [22]

      Yamanoglu R, Efendi E, Kolayli F, Uzuner H, Daoud I. Biomed Mater, 2018, 13: 025013  doi: 10.1088/1748-605X/aa957d

    23. [23]

      Xu K, Chen W, Mu C, Yu Y, Cai K. J Mater Chem B, 2017, 5(33): 6811 − 6826  doi: 10.1039/C7TB01529A

    24. [24]

      Tschernitschek H, Borchers L, Geurtsen W. Quintessence Int, 2005, 36: 523 − 530

    25. [25]

      Katz J N, Wright E A, Wright J, Malchau H, Mahomed N N, Stedman M, Baron J A, Losina E. J Bone Joint Surg Am, 2012, 94: 1825 − 1832  doi: 10.2106/JBJS.K.00569

    26. [26]

      Xie D, Cai K, Hu Y, Luo Z. J Biomed Mater Res A, 2013, 101: 2005 − 2014

    27. [27]

      Liu R, Tang Y, Zeng L, Zhao Y, Ma Z, Sun Z, Xiang L, Ren L, Yang K. Dent Mater, 2018, 34: 1112 − 1126  doi: 10.1016/j.dental.2018.04.007

    28. [28]

      Chen W, Liu Y, Courtney H, Bettenga M, Agrawal C, Bumgardner J, Ong J. Biomaterials, 2006, 27: 5512 − 5517  doi: 10.1016/j.biomaterials.2006.07.003

    29. [29]

      El-Wassefy N, Reicha F, Aref N. Int J Implant Dent, 2017, 3: 39  doi: 10.1186/s40729-017-0095-1

    30. [30]

      Qu J, Lu X, Li D, Ding Y, Leng Y, Weng J, Qu S, Feng B, Watari F. J Biomed Mater Res B Appl Biomater, 2011, 97: 40 − 48

    31. [31]

      Grandjean-Laquerriere A, Tabary O, Jacquot J, Richard D, Frayssinet P, Guenounou M, Laurent-Maquin D, Laquerriere P, Gangloff S. Biomaterials, 2007, 28: 400 − 404  doi: 10.1016/j.biomaterials.2006.09.015

    32. [32]

      Yang W, Xi X, Si Y, Huang S, Wang J, Cai K. Acta Biomater, 2014, 10: 4525 − 4536  doi: 10.1016/j.actbio.2014.05.033

    33. [33]

      Chen W, Shen X, Hu Y, Xu K, Ran Q, Yu Y, Dai L, Yuan Z, Huang L, Shen T, Cai K. Biomaterials, 2017, 114: 82 − 96  doi: 10.1016/j.biomaterials.2016.10.055

    34. [34]

      Chen W, Xu K, Tao B, Dai L, Yu Y, Mu C, Shen X, Hu Y, He Y, Cai K. Acta Biomater, 2018, 74: 489 − 504  doi: 10.1016/j.actbio.2018.04.043

    35. [35]

      Hu Y, Cai K, Luo Z, Zhang Y, Li L, Lai M, Hou Y, Huang Y, Li J, Ding X, Zhang B, Sung KL. Biomaterials, 2012, 33: 3515 − 3528  doi: 10.1016/j.biomaterials.2012.01.040

    36. [36]

      Lai M, Cai K, Zhao L, Chen X, Hou Y, Yang Z. Biomacromolecules, 2011, 12: 1097 − 1105  doi: 10.1021/bm1014365

    37. [37]

      Mu C, Hu Y, Huang L, Shen X, Li M, Li L, Gu H, Yu Y, Xia Z, Cai K. Mater Sci Eng C Mater Biol Appl, 2018, 82: 345 − 353  doi: 10.1016/j.msec.2017.08.056

    38. [38]

      Shen X, Zhang F, Li K, Qin C, Ma P, Dai L, Cai K. Mater Design, 2016, 92: 1007 − 1017  doi: 10.1016/j.matdes.2015.12.126

    39. [39]

      Ran Q, Yu Y, Chen W, Shen X, Mu C, Yuan Z, Tao B, Hu Y, Yang W, Cai K. Mater Sci Eng C Mater Biol Appl, 2018, 91: 44 − 54  doi: 10.1016/j.msec.2018.04.098

    40. [40]

      Zhao L, Hu Y, Xu D, Cai K. Colloid Surf B, 2014, 119: 115 − 25  doi: 10.1016/j.colsurfb.2014.05.002

    41. [41]

      He Y, Mu C, Shen X, Yuan Z, Liu J, Chen W, Lin C, Tao B, Liu B, Cai K. Acta Biomater, 2018, 80: 412 – 424

    42. [42]

      Hu Y, Cai K, Luo Z, Hu R. Adv Eng Mater, 2010, 12: B18 − B25  doi: 10.1002/adem.v12:1/2

    43. [43]

      Cai K, Hu Y, Luo Z, Kong T, Lai M, Sui X, Wang Y, Yang L, Deng L. Angew Chem Int Ed, 2008, 47: 7479 − 7481  doi: 10.1002/anie.v47:39

    44. [44]

      Hu Y, Cai K, Luo Z, Zhang R, Yang L, Deng L, Jandt KD. Biomaterials, 2009, 30: 3626 − 3635  doi: 10.1016/j.biomaterials.2009.03.037

    45. [45]

      Chen W, Li W, Xu K, Li M, Dai L, Shen X, Hu Y, Cai K. J Biomed Mater Res A, 2018, 106: 706 − 717  doi: 10.1002/jbm.a.v106.3

    46. [46]

      Senneville E, Joulie D, Legout L, Valette M, Dezèque H, Beltrand E, Roselé B, d'Escrivan T, Loïez C, Caillaux M, Yazdanpanah Y, Maynou C, Migaud H. Clin Infect Dis, 2011, 53: 334 − 340  doi: 10.1093/cid/cir402

    47. [47]

      Damiati L, Eales M G, Nobbs A H, Su B, Tsimbouri P M, Salmeron-Sanchez M, Dalby M J. J Tissue Eng, 2018, 9: 2041731418790694

    48. [48]

      Sutrisno L, Wang S, Li M, Luo Z, Wang C, Shen T, Chen P, Yang L, Hu Y, Cai K. J Mater Chem B, 2018, 6: 5290 − 5302

    49. [49]

      He Y, Zhang Y, Shen X, Tao B, Liu J, Yuan Z, Cai K. Colloid Surf B, 2018, 170: 54 − 63  doi: 10.1016/j.colsurfb.2018.05.070

    50. [50]

      Tao B, Shen X, Yuan Z, Ran Q, Shen T, Pei Y, Liu J, He Y, Hu Y, Cai K. Colloid Surf B, 2018, 170: 382 − 392  doi: 10.1016/j.colsurfb.2018.06.039

    51. [51]

      Ivanova E, Hasan J, Webb H, Gervinskas G, Juodkazis S, Truong V, Wu A, Lamb R, Baulin V, Watson G, Watson J, Mainwaring D, Crawford R. Nat Commun, 2013, 4: 2838  doi: 10.1038/ncomms3838

    52. [52]

      Wassel E, Es-Souni M, Berger N, Schopf D, Dietze M, Solterbeck C, Es-Souni M. Langmuir, 2017, 33: 6739 − 6750  doi: 10.1021/acs.langmuir.7b00534

    53. [53]

      Chen X, Cai K, Fang J, Lai M, Li J, Hou Y, Luo Z, Hu Y, Tang L. Surf Coat Technol, 2013, 216: 158 − 165  doi: 10.1016/j.surfcoat.2012.11.049

    54. [54]

      Wrona A, Bilewska K, Lis M, Kamińska M, Olszewski T, Pajzderski P, Więcławc G, Jaśkiewiczde M, Kamyszde W. Surf Coat Technol, 2017, 318: 332 − 340  doi: 10.1016/j.surfcoat.2017.01.101

    55. [55]

      Kazemzadeh-Narbat M, Lai B, Ding C, Kizhakkedathu J, Hancock R, Wang R. Biomaterials, 2013, 34: 5969 − 5977  doi: 10.1016/j.biomaterials.2013.04.036

    56. [56]

      Yao S, Feng X, Lu J, Zheng Y, Wang X, Volinsky A, Wang L. Nanotechnology, 2018, 29: 244003  doi: 10.1088/1361-6528/aabac1

    57. [57]

      Liu P, Hao Y, Zhao Y, Yuan Z, Ding Y, Cai K. Colloid Surf B, 2017, 160: 110 − 116  doi: 10.1016/j.colsurfb.2017.08.044

    58. [58]

      Sutrisno L, Hu Y, Shen X, Li M, Luo Z, Dai L, Wang S, Zhong J L, Cai K. Mater Sci Eng C Mater Biol Appl, 2018, 89: 95 − 105  doi: 10.1016/j.msec.2018.03.024

    59. [59]

      Xu D, Yang W, Hu Y, Luo Z, Li J, Hou Y, Liu Y, Cai K. Colloid Surf B, 2013, 110: 225 − 235  doi: 10.1016/j.colsurfb.2013.04.050

    60. [60]

      Yuan Z, Zhao Y, Yang W, Hu Y, Cai K, Liu P, Ding H. Mater Lett, 2016, 183: 85 − 89  doi: 10.1016/j.matlet.2016.07.036

    61. [61]

      Li W, Xu D, Hu Y, Cai K, Lin Y. J Mater Sci Mater Med, 2014, 25: 1435 − 1448

    62. [62]

      Yuan Z, Liu P, Liang Y, Tao B, He Y, Hao Y, Yang Y, Hu Y, Cai K. J Mater Chem B, 2018, 6: 1359 − 1372  doi: 10.1039/C7TB03071A

    63. [63]

      Chen X, Cai K, Fang J, Lai M, Hou Y, Li J, Luo Z, Hu Y, Tang L. Colloid Surf B, 2013, 103: 149 − 157  doi: 10.1016/j.colsurfb.2012.10.022

    64. [64]

      Shen X, Ma P, Hu Y, Xu Q, Xu K, Chen W, Ran Q, Dai L, Yu Y, Mu C, Cai K. J Mater Chem B, 2016, 4: 1423 − 1436

    65. [65]

      Zhang Y, Hu Y, Luo Z, Shen X, Mu C, Cai K. J Biomater Sci Polym Ed, 2015, 26: 290 − 310  doi: 10.1080/09205063.2014.998588

    66. [66]

      Shen X, Zhang Y, Hu Y, Luo Z, Ma P, Li L, Mu C, Huang L, Pei Y, Cai K. J Mater Chem B, 2016, 4: 7101 − 7111  doi: 10.1039/C6TB01779G

    67. [67]

      Huang L, Luo Z, Hu Y, Shen X, Li M, Li L, Zhang Y, Yang W, Liu P, Cai K. J Biomed Mater Res A, 2016, 104: 1437 − 1451  doi: 10.1002/jbm.a.v104.6

    68. [68]

      Tao Z, Zhou W, He X, Liu W, Bai B, Zhou Q, Huang Z, Tu K, Li H, Sun T, Lv Y, Cui W, Yang L. Mater Sci Eng C Mater Biol Appl, 2016, 62: 226 − 232  doi: 10.1016/j.msec.2016.01.034

    69. [69]

      Okuzu Y, Fujibayashi S, Yamaguchi S, Yamamoto K, Shimizu T, Sono T, Goto K, Otsuki B, Matsushita T, Kokubo T, Matsuda S. Acta Biomater, 2017, 63: 383 − 392  doi: 10.1016/j.actbio.2017.09.019

    70. [70]

      Liu J, Li M, Luo Z, Dai L, Guo X, Cai K. Nano Today, 2017, 15: 56 − 90  doi: 10.1016/j.nantod.2017.06.010

    71. [71]

      Dai L, Zhang Q, Shen X, Sun Q, Mu C, Gu H, Cai K. J Mater Chem B, 2016, 4: 4594 − 4604  doi: 10.1039/C6TB01050D

    72. [72]

      Luo Z, Cai K, Hu Y, Zhang B, Xu D. Adv Healthc Mater, 2012, 1: 321 − 325  doi: 10.1002/adhm.201100030

    73. [73]

      Zhou J, Li M, Hou Y, Luo Z, Chen Q, Cao H, Huo R, Xue C, Sutrisno L, Hao L, Cao Y, Ran H, Lu L, Li K, Cai K. ACS Nano, 2018, 12: 2858 − 2872  doi: 10.1021/acsnano.8b00309

    74. [74]

      Luo Z, Cai K, Hu Y, Zhao L, Liu P, Duan L, Yang W. Angew Chem Int Ed, 2011, 50: 640 − 643  doi: 10.1002/anie.v50.3

    75. [75]

      Luo Z, Hu Y, Xin R, Zhang B, Li J, Ding X, Hou Y, Yang L, Cai K. J Biomed Mater Res A, 2014, 102: 3781 − 3794  doi: 10.1002/jbm.a.v102.11

    76. [76]

      Luo Z, Hu Y, Cai K, Ding X, Zhang Q, Li M, Ma X, Zhang B, Zeng Y, Li P, Li J, Liu J, Zhao Y. Biomaterials, 2014, 35: 7951 − 7962  doi: 10.1016/j.biomaterials.2014.05.058

    77. [77]

      Luo Z, Ding X, Hu Y, Wu S, Xiang Y, Zeng Y, Zhang B, Yan H, Zhang H, Zhu L, Liu J, Li J, Cai K, Zhao Y. ACS Nano, 2013, 7: 10271 − 10284  doi: 10.1021/nn404676w

    78. [78]

      Liu J, Luo Z, Zhang J, Luo T, Zhou J, Zhao X, Cai K. Biomaterials, 2016, 83: 51 − 65  doi: 10.1016/j.biomaterials.2016.01.008

    79. [79]

      Dai L, Li K, Li M, Zhao X, Luo Z, Lu L, Luo Y, Cai K. Adv Funct Mater, 2018, 28: 1707249  doi: 10.1002/adfm.v28.18

    80. [80]

      Dai L, Cai R, Li M, Luo Z, Yu Y, Chen W, Shen X, Pei Y, Zhao X, Cai K. Chem Mater, 2017, 29: 6976 − 6992  doi: 10.1021/acs.chemmater.7b02513

  • 加载中
    1. [1]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    2. [2]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    3. [3]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    4. [4]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    5. [5]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    6. [6]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    7. [7]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    8. [8]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    9. [9]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    10. [10]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    11. [11]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    12. [12]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    13. [13]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    14. [14]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    15. [15]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    16. [16]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    17. [17]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    18. [18]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    19. [19]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    20. [20]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

Metrics
  • PDF Downloads(0)
  • Abstract views(133)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return