Citation: Bin Ding. Functional Polymeric Micro/Nano-fibrous Materials[J]. Acta Polymerica Sinica, ;2019, 50(8): 764-774. doi: 10.11777/j.issn1000-3304.2019.19069 shu

Functional Polymeric Micro/Nano-fibrous Materials

  • Corresponding author: Bin Ding, binding@dhu.edu.cn
  • Received Date: 9 April 2019
    Revised Date: 21 May 2019
    Available Online: 12 June 2019

  • Benefiting from intensive size effect and surface effect arising from thin fibers, micro/nano-fibrous membranes exhibit many fascinating properties and have become a hot spot and leading edge in the fiber materials. Among the existing processing approaches for micro/nano-fibers, electrospinning has proven to be one of the most effective and promising method due to its integrated characteristics, including broad availability to varieties of polymers, adjustable porous structure, and superior technological convergence. In recent years, our research group have endeavored systematic researches on the controllable fabrication and applications of electrospun micro/nano-fibrous materials, especially in the terms of ultra-thin nanonets, compactly bonded membranes and porous fibrous aerogels. This review mainly puts focus on the formation mechanisms and applications of these distinctive micro/nano-fibrous materials, which are summarized as follows. Firstly, the two-dimensional nanonets with extremely small diameters (< 20 nm) are fabricated by a novel electrospinning/netting technique, and the deformation-phase transition of the charged jets/droplets from polymer solution during the period is also revealed, which have broken the bottleneck of the thinning on diameter of electrospun fibers. And the novel nanonets demonstrate lower air resistance due to the slip flow of air molecules on the periphery of nanofibers, holding great promise as an exceptional candidate for air filtration. Secondly, compactly bonded membranes with stable porous structures are constructed directly through the regulation of the relative humidity, and the effects of relative humidity on electrospinning jet stretching and solidification are investigated. Additionally, hydrophobicly modified compactly bonded membranes demonstrate excellent waterproofness and breathability, thus implying their potential application in selective separation of gas-liquid medium. Thirdly, the ultralight polymeric micro/nano-fibrous aerogels with hierarchical cellular structure and superelasticity are prepared via a novel three-dimensional fibrous framework reconstruction method, which exhibit the integrated properties of extremely low density (minimum of 0.12 mg/cm3), super recyclable compressibility and multifunctionality of combining the thermal insulation, sound absorption, emulsion separation and elasticity-responsive electric conduction. The future perspectives of micro/nano-fibrous materials were also given at the end of this review.
  • 加载中
    1. [1]

    2. [2]

      Zhang Zhitao(张智涛), Zhang Ye(张晔), Li Yiming(李一明), Peng Huisheng(彭慧胜). Acta Polymerica Sinica(高分子学报), 2016, (10): 1284 − 1299  doi: 10.11777/j.issn1000-3304.2016.16185

    3. [3]

      Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S. Compos Sci Technol, 2003, 63(15): 2223 − 2253  doi: 10.1016/S0266-3538(03)00178-7

    4. [4]

      Wang X F, Ding B, Li B Y. Mater Today, 2013, 16(6): 229 − 241  doi: 10.1016/j.mattod.2013.06.005

    5. [5]

      Joshi M, Butola B S, Saha K. J Nanosci Nanotechnol, 2014, 14(1): 853 − 867  doi: 10.1166/jnn.2014.9083

    6. [6]

      Kim B S, Kim I S. Polym Rev, 2011, 51(3): 235 − 238  doi: 10.1080/15583724.2011.599507

    7. [7]

      Greiner A, Wendorff J H. Angew Chem, 2007, 46(30): 5670 − 5703  doi: 10.1002/(ISSN)1521-3773

    8. [8]

      Li D, Xia Y N. Adv Mater, 2004, 16(14): 1151 − 1170  doi: 10.1002/adma.200400719

    9. [9]

    10. [10]

      Yu X, Wu X H, Si Y, Wang X F, Yu J Y, Ding B. Adv Mater Interfaces, 2019, 1800931: 1 − 19

    11. [11]

      Han Z Y, Cheng Z Q, Chen Y, Li B, Liang Z W, Li H F, Ma Y J, Feng X. Nanoscale, 2019, 11: 592 − 5950

    12. [12]

      Panda P K. T Indian Ceram Soc, 2007, 66(2): 65 − 76  doi: 10.1080/0371750X.2007.11012252

    13. [13]

      Lee J K Y, Chen N, Peng S, Li L, Tian L, Thakor N, Ramakrishna S. Prog Polym Sci, 2018, 86: 40 − 84  doi: 10.1016/j.progpolymsci.2018.07.002

    14. [14]

      Pereao O K, Bode-Aluko C, Ndayambaje G, Fatoba O, Petrik L F. J Polym Environ, 2017, 25(4): 1175 − 1189  doi: 10.1007/s10924-016-0896-y

    15. [15]

      Thavasi V, Singh G, Ramakrishna S. Energy Environ Sci, 2008, 1(2): 205 − 221  doi: 10.1039/b809074m

    16. [16]

      Ding J X, Zhang J, Li J N, Li D, Xiao C S, Xiao H H, Yang H H, Zhuang X L, Chen X S. Prog Polym Sci, 2019, 90: 1 − 34  doi: 10.1016/j.progpolymsci.2019.01.002

    17. [17]

      Ding Y, Li W, Zhang F, Liu Z, Ezazi N Z, Liu D, Santos H A. Adv Funct Mater, 2019, 29(2): 1802852  doi: 10.1002/adfm.v29.2

    18. [18]

      Yu S, Myung N V. Electroanalysis, 2018, 30(10): 2330 − 2338  doi: 10.1002/elan.v30.10

    19. [19]

      Du J, Shintay S, Zhang X. J Polym Sci, Part B: Polym Phys, 2008, 46(15): 1611 − 1618  doi: 10.1002/polb.v46:15

    20. [20]

      Wongsasulak S, Patapeejumruswong M, Weiss J, Supaphol P, Yoovidhya, T. J Food Eng, 2010, 98(3): 370 − 376  doi: 10.1016/j.jfoodeng.2010.01.014

    21. [21]

      Yu J H, Fridrikh S V, Rutledge G C. Adv Mater, 2004, 16(17): 1562 − 1566  doi: 10.1002/adma.200306644

    22. [22]

      Ding B, Li C R, Miyauchi Y, Kuwaki O, Shiratori S. Nanotechnol, 2006, 17(15): 3685 − 3691  doi: 10.1088/0957-4484/17/15/011

    23. [23]

      Zhang S C, Chen K, Yu J Y, Ding B. Polymer, 2015, 74: 182 − 192  doi: 10.1016/j.polymer.2015.08.002

    24. [24]

      Zhang S C, Liu H, Tang N, Ge J L, Yu J Y, Ding B. Nat Commun, 2019, 10(1): 1458  doi: 10.1038/s41467-019-09444-y

    25. [25]

      Wang X F, Ding B, Sun G, Wang M R, Yu J Y. Prog Mater Sci, 2013, 58(8): 1173 − 1243  doi: 10.1016/j.pmatsci.2013.05.001

    26. [26]

      Hu J P, Wang X F, Ding B, Lin J Y, Yu J Y, Sun G. Macromol Rapid Commun, 2011, 32(21): 1729 − 1734  doi: 10.1002/marc.201100343

    27. [27]

      Sahay R, Teo C J, Chew Y T. J Fluid Mech, 2013, 735: 150 − 175  doi: 10.1017/jfm.2013.497

    28. [28]

      Bhardwaj N, Kundu S C. Biotechnol Adv, 2010, 28(3): 325 − 347  doi: 10.1016/j.biotechadv.2010.01.004

    29. [29]

      Jaworek A, Krupa A. J Aerosol Sci, 1999, 30(7): 873 − 893  doi: 10.1016/S0021-8502(98)00787-3

    30. [30]

      Griffiths, David J. Am J Phys, 2005, 73(6): 574 − 574

    31. [31]

      Laval G, Mercier C, Pellat R. Nucl Fusion, 1965, 5(2): 156 − 168  doi: 10.1088/0029-5515/5/2/007

    32. [32]

      Dayal P, Kyu T. J Appl Phys, 2006, 100(4): 43512  doi: 10.1063/1.2259812

    33. [33]

      Dayal P, Kyu T. Phys Fluids, 2007, 19(10): 107106  doi: 10.1063/1.2800277

    34. [34]

      Zuo F L, Zhang S C, Liu H, Fong H, Yin X, Yu J Y, Ding B. Small, 2017, 13(46): 1702139  doi: 10.1002/smll.v13.46

    35. [35]

      Zhao X L, Wang S, Yin X, Yu J Y, Ding B. Sci Rep, 2016, 6: 35472  doi: 10.1038/srep35472

    36. [36]

      Li P, Wang C Y, Zhang Y Y, Wei F. Small, 2014, 10(22): 4543 − 4561  doi: 10.1002/smll.v10.22

    37. [37]

      Maze B, Tafreshi V T, Wang Q, Pourdeyhimi B. J Aerosol Sci, 2007, 38: 550 − 570  doi: 10.1016/j.jaerosci.2007.03.008

    38. [38]

      Liu Y, Zhang G K, Zhuang X P, Li S S, Shi L, Kang W M, Cheng B W, Xu X L. Polymers, 2019, 11(2): 364  doi: 10.3390/polym11020364

    39. [39]

      Na H N, Li Q Y, Sun H, Zhao C, Yuan X Y. Polymer Eng Sci, 2009, 49(7): 1291 − 1298  doi: 10.1002/pen.v49:7

    40. [40]

      Sheng J L, Xu Y, Yu J Y, Ding B. ACS Appl Mater Interfaces, 2017, 9(17): 15139 − 15147  doi: 10.1021/acsami.7b02594

    41. [41]

      Li X, Lin J Y, Bian F G, Zeng Y C. J Polym Sci, Part B: Polym Phys, 2018, 56(1): 36 − 45  doi: 10.1002/polb.24534

    42. [42]

      Sheng J L, Zhang M, Xu Y, Yu J Y, Ding B. ACS Appl Mater Interfaces, 2016, 8(40): 27218 − 27226  doi: 10.1021/acsami.6b09392

    43. [43]

      Pelipenko J, Kristl J, Jankovic B, Baumgartner S, Kocbek P. Int J Pharmaceut, 2013, 456(1): 125 − 134  doi: 10.1016/j.ijpharm.2013.07.078

    44. [44]

      Thompson C J, Chase G G, Yarin A L, Reneker D H. Polymer, 2007, 48(23): 6913 − 6922  doi: 10.1016/j.polymer.2007.09.017

    45. [45]

      Li Y, Yang F F, Yu J Y, Ding B. Adv Mater Interfaces, 2016, 3(19): 1600516  doi: 10.1002/admi.201600516

    46. [46]

      Jiang G S, Luo L Q, Tan L, Wang J L, Zhang S X, Zhang F, Jin J. ACS Appl Mater Interfaces, 2018, 10(33): 28210 − 28218  doi: 10.1021/acsami.8b08191

    47. [47]

      Miao D Y, Huang Z, Wang X F, Yu J Y, Ding B. Small, 2018, 14(32): 1801527  doi: 10.1002/smll.v14.32

    48. [48]

      Wang J L, Raza A, Si Y, Cui L X, Ge J F, Ding B, Yu J Y. Nanoscale, 2012, 4(23): 7549 − 7556  doi: 10.1039/c2nr32883f

    49. [49]

      Zhao J, Li Y, Sheng J L, Wang X F, Liu L F, Yu J Y, Ding B. ACS Appl Mater Interfaces, 2017, 9(34): 29302 − 29310  doi: 10.1021/acsami.7b08885

    50. [50]

      Li Y, Zhu Z G, Yu J Y, Ding B. ACS Appl Mater Interfaces, 2015, 7(24): 13538 − 13546  doi: 10.1021/acsami.5b02848

    51. [51]

      Gu X Y, Li N, Cao J, Xiong J. Polym Eng Sci, 2018, 58(8): 1381 − 1390  doi: 10.1002/pen.v58.8

    52. [52]

      Guex A G, Weidenbacher L, Maniura-Weber K, Rossi R M, Fortunato G. Macromol Mater Eng, 2017, 302(10): 1700081  doi: 10.1002/mame.v302.10

    53. [53]

      Li Z L, Shen J L, Abdalla I, Yu J Y, Ding B. Nano Energy, 2017, 36: 341 − 348  doi: 10.1016/j.nanoen.2017.04.035

    54. [54]

      Lukas D, Sarkar A, Martinova L, Vodsed A, Lubasova D, Chaloupek J, Pokorny P, Mikes P, Chvojka J, Komarek M. Text Prog, 2009, 40(2): 59 − 140

    55. [55]

      Soliman S, Pagliari S, Rinaldi A, Forte G, Fiaccavento R, Pagliari F, Franzese O. Acta Biomater, 2010, 6(4): 1227 − 1237  doi: 10.1016/j.actbio.2009.10.051

    56. [56]

      Teo W E, Gopal R, Ramaseshan R, Fujihara K, Ramakrishna S. Polymer, 2007, 48(12): 3400 − 3405  doi: 10.1016/j.polymer.2007.04.044

    57. [57]

      Zhang D M, Chang J. Nano Lett, 2008, 8(10): 3283 − 3287  doi: 10.1021/nl801667s

    58. [58]

      Cai Q, Yang J A, Bei J Z, Wang S G. Biomaterials, 2002, 23(23): 4483 − 4492  doi: 10.1016/S0142-9612(02)00168-0

    59. [59]

      Si Y, Yu J Y, Tang X M, Ge J L, Ding B. Nat Commun, 2014, 5: 5802  doi: 10.1038/ncomms6802

    60. [60]

      Ding Bin(丁彬), Si Yang(斯阳), Hong Feifei(洪菲菲), Yan Chengcheng(闫成成), Wang Xueqin(王雪琴), Yu Jianyong(俞建勇). Chinese Science Bulletin(科学通报), 2015, 60(21): 1992 − 2002

    61. [61]

      Si Y, Fu Q X, Wang X Q, Zhu J, Yu J Y, Sun G, Ding B. ACS Nano, 2015, 9(4): 3791 − 3799  doi: 10.1021/nn506633b

    62. [62]

      Si Y, Wang X Q, Yan C C, Yang L, Yu J Y, Ding B. Adv Mater, 2016, 28(43): 9512 − 9518  doi: 10.1002/adma.201603143

    63. [63]

      Si Y, Wang L H, Wang X Q, Tang N, Yu J Y, Ding B. Adv Mater, 2017, 29(24): 1700339  doi: 10.1002/adma.201700339

    64. [64]

      Si Y, Wang X Q, Dou L Y, Yu J Y, Ding B. Sci Adv, 2018, 4(4): eaas8925  doi: 10.1126/sciadv.aas8925

    65. [65]

      Cao L T, Si Y, Wu Y Y, Wang X Q, Yu J Y, Ding B. Nanoscale, 2019, 11(5): 2289 − 2298  doi: 10.1039/C8NR09288E

    66. [66]

      Fu Q X, Si Y, Duan C, Yan Z S, Liu L F, Yu J Y, Di ng, B. Adv Funct Mater, 2019, 29: 1808234  doi: 10.1002/adfm.v29.13

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    3. [3]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    4. [4]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    8. [8]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    9. [9]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    11. [11]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    12. [12]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    13. [13]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    19. [19]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    20. [20]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

Metrics
  • PDF Downloads(0)
  • Abstract views(289)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return