Citation: Ling-fei Zheng, Zheng Wang, Yu-hua Yin, Run Jiang, Bao-hui Li. Monte Carlo Simulations of the Self-assembly of ABA Tri-block Copolymers inside an Oil-in-water Emulsion Droplet[J]. Acta Polymerica Sinica, ;2019, 50(9): 915-924. doi: 10.11777/j.issn1000-3304.2019.19051 shu

Monte Carlo Simulations of the Self-assembly of ABA Tri-block Copolymers inside an Oil-in-water Emulsion Droplet

  • Corresponding author: Bao-hui Li, baohui@nankai.edu.cn
  • Received Date: 15 March 2019
    Revised Date: 31 March 2019
    Available Online: 10 May 2019

  • The self-assembly of symmetric ABA tri-block copolymers inside an oil-in-water emulsion droplet upon solvent evaporation is investigated by Monte Carlo simulations, and the simulation results are compared with those in AB di-block copolymer systems. A morphological phase diagram is constructed in the two-dimensional space composed of surfactant concentration (φ) and the volume fraction of B segments (fB). Non-porosity particles, closed-porosity particles, open-porosity particles, capsules, and micelles are observed. The study shows that when fB ≤ 1/2, the increase of φ leads to a morphological evolution from non-porosity particle to closed-porosity particle and open-porosity particle, while for fB > 1/2, micelles are observed in a larger φ window. The fraction of bridge chains (vB) as a function of φ is always much lower than the corresponding bulk value. Moreover, the mean-square radius of gyration (<Rg2>) of the ABA tri-block copolymer chains is much smaller than that of the corresponding AB di-block copolymer chains with the same fB and φ values under the same condition. Due to the influence of chain conformation, no capsule appears in the ABA tri-block copolymer system when fB ≤ 1/2, which is different from the case of the corresponding AB di-block copolymer system. The specific surface area of particles with the same morphology falls into almost the same p regime, which indicates that the particle morphology largely determines its specific surface area. By calculating the formation energy of particles, it is confirmed that the surfactants in the system are the key to the formation of porous particles. All these are the same as what have been observed in AB di-block copolymer systems. In addition, the radial density distributions of water molecules in ABA tri-block system and the corresponding AB di-block system are not exactly the same, but the particle sizes are basically identical. The evolution processes including the typical non-porosity particles, closed-porosity particles, and open-porosity particles, as well as the bridging fraction during solvent evaporation are further discussed.
  • 加载中
    1. [1]

      Gong X, Wen W, Sheng P. Langmuir, 2009, 25: 7072 − 7077  doi: 10.1021/la900120c

    2. [2]

      Macintyre F S, Sherrington D C. Macromolecules, 2004, 37: 7628 − 7636  doi: 10.1021/ma0491053

    3. [3]

      Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K. Chem Rev, 2012, 112: 3959 − 4015  doi: 10.1021/cr200440z

    4. [4]

      Cai Y, Chen Y, Hong X, Liu Z, Yuan W. Int J Nanomed, 2013, 8: 1111 − 1120

    5. [5]

      Li G, Yang X, Wang B, Wang J, Yang X. Polymer, 2008, 49: 3436 − 3443  doi: 10.1016/j.polymer.2008.06.004

    6. [6]

      Yang X, Chen L, Huang B, Bai F, Yang X. Polymer, 2009, 50: 3556 − 3563  doi: 10.1016/j.polymer.2009.06.027

    7. [7]

      Desforges A, Arpontet M, Deleuze H, Mondain-Monval O. React Funct Polym, 2002, 53: 183 − 192  doi: 10.1016/S1381-5148(02)00172-4

    8. [8]

      Gao F, Su Z G, Wang P, Ma G H. Langmuir, 2009, 25: 3832 − 3838  doi: 10.1021/la804173b

    9. [9]

      Fujibayashi T, Komatsu Y, Konishi N, Yamori H, Okubo M. Ind Eng Chem Res, 2008, 47: 6445 − 6449  doi: 10.1021/ie800188f

    10. [10]

      Perrier-Cornet R, Heroguez V, Thienpont A, Babot O, Toupance T. J Chromatogr A, 2008, 1179: 2 − 8  doi: 10.1016/j.chroma.2007.09.064

    11. [11]

      Zhou W Q, Gu T Y, Su Z G, Ma G H. Eur Polym J, 2007, 43: 4493 − 4502  doi: 10.1016/j.eurpolymj.2007.07.010

    12. [12]

      Wan J, Bick A, Sullivan M, Stone H A. Adv Mater, 2008, 20: 3314 − 3318  doi: 10.1002/adma.v20:17

    13. [13]

      Serra C A, Chang Z. Chem Eng Technol, 2008, 31: 1099 − 1115  doi: 10.1002/ceat.v31:8

    14. [14]

      He X, Ge X, Liu H, Wang M, Zhang Z. Chem Mater, 2005, 17: 5891 − 5892  doi: 10.1021/cm051694j

    15. [15]

      Zhu J, Hayward R C. Angew Chem, 2008, 120: 2143 − 2146  doi: 10.1002/(ISSN)1521-3757

    16. [16]

      Zhu J, Ferrer N, Hayward R C. Soft Matter, 2009, 5: 2471 − 2478  doi: 10.1039/b818065b

    17. [17]

      Zhu J, Hayward R C. J Colloid Interf Sci, 2012, 365: 275 − 279  doi: 10.1016/j.jcis.2011.09.020

    18. [18]

      Ku K H, Shin J M, Klinger D, Jang S G, Hayward R C, Hawker C J, Kim B J. ACS Nano, 2016, 10: 5243 − 5251  doi: 10.1021/acsnano.6b00985

    19. [19]

      Ku K H, Shin J M, Yun H, Yi G R, Jang S G, Kim B J. Adv Funct Mater, 2018, 28(1-28): 1802961

    20. [20]

      Fan J B, Song Y, Wang S, Jiang L, Zhu M Q, Guo X. RSC Adv, 2014, 4: 629 − 633  doi: 10.1039/C3RA44197K

    21. [21]

      Zheng L, Wang Z, Yin Y, Jiang R, Li B. Langmuir, 2019, Doi:10.1021/acs.langmuir.9b00613

    22. [22]

      Carmesin I, Kremer K. Macromolecules, 1988, 21: 2819 − 2823  doi: 10.1021/ma00187a030

    23. [23]

      Larson R G. J Chem Phys, 1992, 96: 7904 − 7918

    24. [24]

      Sun P, Yin Y, Li B, Chen T, Jin Q, Ding D. J Chem Phys, 2008, 122(1-8): 204905

    25. [25]

      Wang Z, Li B, Jin Q, Ding D, Shi A C. Macromol Theory Simul, 2008, 17: 86 − 102  doi: 10.1002/(ISSN)1521-3919

    26. [26]

      Xu Jihua(徐纪华), Jiang Run(蒋润), Yin Yuhua(尹玉华), Wang Zheng(王铮), Li Baohui(李宝会). Acta Polymerica Sinica(高分子学报), 2013, (10): 1277 − 1284

    27. [27]

      Wang Yingying(王英英), Ma Jiani(麻家妮), Cui Jie(崔杰), Han Yuanyuan(韩媛媛), Jiang Wei(姜伟). Acta Polymerica Sinica(高分子学报), 2018, (8): 1116 − 1126

    28. [28]

      Rabani E, Reichman D R, Geissler P L, Brus L E. Nature, 2003, 426: 271 − 274  doi: 10.1038/nature02087

    29. [29]

      Yosef G, Rabani E. J Phys Chem B, 2006, 110: 20965 − 20972  doi: 10.1021/jp063668u

    30. [30]

      Deng R, Li H, Liang F, Zhu J, Li B, Xie X, Yang Z. Macromolecules, 2015, 48: 5855 − 5860  doi: 10.1021/acs.macromol.5b01261

    31. [31]

      Deng R, Li H, Zhu J, Li B, Liang F, Jia F, Qu X, Yang Z. Macromolecules, 2016, 49: 1362 − 1368  doi: 10.1021/acs.macromol.5b02507

    32. [32]

      Hao Jinlong(郝金龙), Wang Zhan(汪湛), Wang Zheng(王铮), Yin Yuhua(尹玉华), Jiang Run(蒋润), Li Baohui(李宝会). Acta Polymerica Sinica(高分子学报), 2017, (11): 1841 − 1850

    33. [33]

      Li C, Wang W, Wang X, Jiang H, Zhu J, Lin S. Eur Polym J, 2015, 68: 409 − 418  doi: 10.1016/j.eurpolymj.2015.05.011

    34. [34]

      Wang Z, Li B, Jin Q, Ding D, Shi A C. Macromol Theory Simul, 2008, 17: 301 − 312  doi: 10.1002/mats.v17:6

    35. [35]

      Huh J, Jo W H. Macromolecules, 2002, 35: 2413 − 2416  doi: 10.1021/ma011431k

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    4. [4]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    5. [5]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    8. [8]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    9. [9]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    10. [10]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    11. [11]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    12. [12]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    13. [13]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    16. [16]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    17. [17]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    18. [18]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    19. [19]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    20. [20]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

Metrics
  • PDF Downloads(0)
  • Abstract views(134)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return