Citation: Can-yu Dou, Yan-jun Zhang, Chen Zhang, Yi-xian Wu. Synthesis and Properties of Polystyrene-g-Poly(2-ethyl-2-oxazoline) Amphiphilic Graft Copolymers[J]. Acta Polymerica Sinica, ;2019, 50(9): 939-948. doi: 10.11777/j.issn1000-3304.2019.19048 shu

Synthesis and Properties of Polystyrene-g-Poly(2-ethyl-2-oxazoline) Amphiphilic Graft Copolymers

  • Corresponding author: Yi-xian Wu, wuyx@mail.buct.edu.cn
  • Received Date: 11 March 2019
    Revised Date: 28 March 2019
    Available Online: 27 May 2019

  • Polyoxazolines have drawn much attention by researchers because of their hydrophilicity, good biocompatibility, non-toxicity. Chemical modification on polyoxazolines and their derivatives by grafting reaction with other synthetic polymer chains is one of the most important ways to improve the comprehensive properties of polyoxazoline materials. The novel amphiphilic polystyrene-g-poly(2-ethyl-2-oxazoline), PS-g-PEOX, graft copolymers were prepared through the combination of " grafting from” method and cationic ring-opening polymerization of 2-ethyl-2-oxazoline using the polystyrene bearing chloromethyl functional groups as the macroinitiator in the presence of activator, such as potassium iodide (KI), silver perchlorate (AgClO4) or silver trifluoromethanesulfonate (AgCF3SO3). The chemical structure and composition of PS-g-PEOX graft copolymers were confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H-NMR). The results show that the novel amphiphilic PS-g-PEOX graft copolymers with various PEOX grafting contents ranging from 8% to 97% could be synthesized by changing the feed ratios of monomer and activator. The silver nanoparticle (5 – 10 nm) content in a range from 0.1% to 3.5% was uniformly dispersed in the PS-g-PEOX graft copolymer matrix. The microphase separation of amphiphilic PS-g-PEOX graft copolymer/silver nanoparticle nanocomposite was observed and the microscopic morphology was related to PEOX contents. The hydrophilicity of the amphiphilic PS-g-PEOX graft copolymers and water contact angle (WCA) increased with PEOX content. And the WCA of PS-g-PEOX graft copolymer film with 97% PEOX content is 24°. What’s more, amphiphilic PS-g-PEOX graft copolymers can form stable and uniform micro/nano micelles in water. The stable oil/water suspension can be produced by adding a small amount of PS-g-PEOX graft copolymer into the incompatible water/toluene mixed system. The topological structure which formed by introducing PEOX onto PS backbones is beneficial to improve the thermal stability of PEOX. The good hydrophilicity of PEOX branches in PS-g-PEOX graft copolymer does a favor to the anti-adsorption properties against bovine serum albumin. The graft copolymer/silver nanoparticle composites behave a good antibacterial activity against E. coli, which increased with the content of nano silver.
  • 加载中
    1. [1]

      Aoi K, Okada M. Prog Polym Sci, 1996, 21(1): 151 − 208  doi: 10.1016/0079-6700(95)00020-8

    2. [2]

      Saegusa T, Kobayashi S. Macromol Symp, 1986, 1(1): 23 − 37  doi: 10.1002/(ISSN)1521-3900a

    3. [3]

      Konradi R, Acikgoz C, Textor M. Macromol Rapid Commun, 2012, 33(19): 1663 − 1676  doi: 10.1002/marc.201200422

    4. [4]

      Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov A V, Jordan R. Macromol Rapid Commun, 2012, 33(19): 1613 − 1631  doi: 10.1002/marc.201200354

    5. [5]

      Hoogenboom R. Angew Chem Int Ed, 2010, 48(44): 7978 − 7994

    6. [6]

      Sedlacek O, Monnery B D, Filippov S K, Hoogenboom R, Hruby M. Macromol Rapid Commun, 2012, 33(19): 1648 − 1662  doi: 10.1002/marc.201200453

    7. [7]

      Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J. Prog Polym Sci, 2006, 31(12): 1068 − 1132  doi: 10.1016/j.progpolymsci.2006.07.002

    8. [8]

      Carlos R J, Stefan Z, Hartmut K, Franziska K, Karl-Friedrich A, Brigitte V. Macromol Chem Phys, 2010, 211(6): 706 − 716  doi: 10.1002/macp.v211:6

    9. [9]

      Rueda-Sánchez J, Galloso M C. Macromol Rapid Commun, 2001, 22(11): 859 − 863  doi: 10.1002/(ISSN)1521-3927

    10. [10]

      Nuyken O, Sanchez J R, Voit B. Macromol Rapid Commun, 1997, 18(2): 125 − 131  doi: 10.1002/marc.1997.030180209

    11. [11]

      Kanaoka S, Omura T, Sawamoto M, Higashimura T. Macromolecules, 1992, 25(25): 6407 − 6413

    12. [12]

      Wang L L, Wu Y X, Xu R W, Wu G Y, Yang W T. Chinese J Polym Sci, 2010, 28(3): 449 − 456  doi: 10.1007/s10118-010-9092-z

    13. [13]

      Schäfer M, Wieland P C, Nuyken O. J Polym Sci, Part A: Polym Chem, 2002, 40(21): 3725 − 3733  doi: 10.1002/pola.10472

    14. [14]

      Juan R, Rau S, Hartmut K, Brigitte V. Macromol Chem Phys, 2003, 204: 954 − 960  doi: 10.1002/macp.200390065

    15. [15]

      Ma W Y, Wu Y X, Li F, Xu R W. Polymer, 2012, 53(15): 3185 − 3193  doi: 10.1016/j.polymer.2012.05.028

    16. [16]

      Däbritz F, Lederer A, Komber H, Voit B. J Polym Sci, Part A: Polym Chem, 2012, 50(10): 1979 − 1990  doi: 10.1002/pola.v50.10

    17. [17]

      Vukomanović M, Repnik U, Zavašnikbergant T. ACS Biomater Sci Eng, 2015, 1(10): 935 − 946  doi: 10.1021/acsbiomaterials.5b00170

    18. [18]

      Chang Tianxiao(常添笑), Zhang Hangtian(张航天), Lu Congjie(卢聪杰), Wu Yixian(吴一弦). Acta Polymerica Sinica(高分子学报), 2018, (6): 700 − 711  doi: 10.11777/j.issn1000-3304.2017.17290

    19. [19]

      Wei Mengjuan(魏梦娟), Zhang Qi(章琦), Zhang Hangtian(张航天), Wu Yixian(吴一弦). Acta Polymerica Sinica(高分子学报), 2018, (4): 464 − 474  doi: 10.11777/j.issn1000-3304.2017.17130

    20. [20]

      Zhou Qi(周琦), Du Jie(杜杰), Wang Nan(王楠), Wu Yixian(吴一弦). Acta Polymerica Sinica(高分子学报), 2017, (7): 1047 − 1057  doi: 10.11777/j.issn1000-3304.2017.17045

    21. [21]

      Guo Anru(郭安儒), Yu Rui(俞瑞), Yu Jianpeng(于建鹏), Zhao Lili(赵立莉), Yang Fan(杨幡), Zhang Yu(张宇), Wu Yixian(吴一弦). Chinese Polymer Bulletin(高分子通报), 2013, (4): 51 − 86

    22. [22]

      Liu Xiao(刘晓), Li Shenran(李晟冉), Wu Yixian(吴一弦). Chinese Polymer Bulletin(高分子通报), 2017, (11): 1753 − 1761

    23. [23]

      Zhang Qi(章琦), Wei Mengjuan(魏梦娟), Deng Jinrui(邓金睿), Wu Yixian(吴一弦). Acta Polymerica Sinica(高分子学报), 2018, (9): 1202 − 1211  doi: 10.11777/j.issn1000-3304.2018.18032

    24. [24]

      Kempe K, Jacobs S, Lambermont-Thijs H M L, Fijten M M, Hoogenboom R, Schubert U S. Macromolecules, 2010, 43(9): 4098 − 4104  doi: 10.1021/ma9028536

    25. [25]

      Fan H, Wang C, Li Y, Wei Y. J Membr Sci, 2012, 415: 161 − 167

  • 加载中
    1. [1]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    2. [2]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    5. [5]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    6. [6]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    7. [7]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    8. [8]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    9. [9]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    10. [10]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    11. [11]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    12. [12]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    19. [19]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(0)
  • Abstract views(169)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return