Citation: Yun Bai, Yue-tao Zhang. Polymerization of Polar Vinyl Monomers Catalyzed by Lewis Pairs[J]. Acta Polymerica Sinica, ;2019, 50(3): 233-246. doi: 10.11777/j.issn1000-3304.2019.18269 shu

Polymerization of Polar Vinyl Monomers Catalyzed by Lewis Pairs

  • Corresponding author: Yue-tao Zhang, ytzhang2009@jlu.edu.cn
  • Received Date: 18 December 2018
    Revised Date: 17 January 2019
    Available Online: 28 February 2019

  • The field of the " frustrated Lewis pair” (FLP) chemistry has been receiving sustained intense interests ever since the seminal work reported by Stephan and Erker. On the one hand, the application of FLPs has now been well established in the small molecule chemistry, such as the activation of small molecules, catalytic hydrogenation reactions, and new reactivity/reaction developments. On the other hand, Lewis pair polymerization (LPP) has emerged as the hotspot and frontier of polymer synthesis and generated some exciting results in polymer synthesis, especially in the polymerization of various polar vinyl monomers. Although the polymerization promoted by LPs, either FLPs or classical Lewis adducts (CLAs), exhibited high activity for polymerization of polar vinyl monomers, the application of such polymerization is hampered by both the low initiation efficiencies and chain-termination side reactions, evidenced by the much higher obtained number-average molecular weight (Mn) than the calculated Mn and broader molecular weight distribution (MWD, or large Đ values) of the resulting polymers, thus giving rise to low initiation efficiencies (I*) and rendering the inability to produce well-defined block copolymers. Therefore, it remains as a challenge to achieve the living polymerization of polar vinyl monomers by a non-interacting, true FLP, or LP-promoted living polymerization of less bulky methacrylates, particularly methyl methacrylate (MMA), a very important fundamental monomer in the polymer industry. Herein, we summarized the recent developments achieved in the polar vinyl monomer polymerization by LPP since the first successful polymerization catalyzed by LP in 2010, including the scopes of monomers, investigation of reaction mechanism, and different polymerization catalyst systems based on classic Lewis acid-base adduct (CLA) or FLP. These results indicated that the synergistic effects of the LA and LB sites of LPs were essential to achieve an effective and controllable polymerization system. By choosing appropriate combination of Lewis acid and Lewis base, not only the living polymerization of polar vinyl monomer could be achieved, but also the synthesis of ultrahigh molecular weight polymer with Mn > 106 g mol−1 and narrow MWD was obtained through this FLP polymerization strategy. Last but not least, with the aim to push forward the studies on LPP, more attention should be paid by chemists from but not limited to the field of frustrated Lewis pairs chemistry for the developing and enriching polymer synthesis by LPP.
  • 加载中
    1. [1]

      Lewis G N. Valence and the Structure of Atoms and Molecules. New York: Chemical Catalog Co., 1923. 1 – 173

    2. [2]

      Brown H C, Schlesinger H I, Cardon S Z. J Am Chem Soc, 1942, 64(2): 325 − 329  doi: 10.1021/ja01254a031

    3. [3]

      Wittig G, Benz E. Chem Ber, 1959, 92(9): 1999 − 2013  doi: 10.1002/(ISSN)1099-0682

    4. [4]

      Tochtermann W. Angew Chem Int Ed, 1966, 5(4): 351 − 371  doi: 10.1002/(ISSN)1521-3773

    5. [5]

      Welch G C, Juan R S, Masuda J D, Stephan D W. Science, 2006, 314(5802): 1124 − 1126  doi: 10.1126/science.1134230

    6. [6]

      Welch G C, Stephan D W. J Am Chem Soc, 2007, 129(7): 1880 − 1881  doi: 10.1021/ja067961j

    7. [7]

      Spies P, Erker G, Kehr G, Bergander K, Frçhlich R, Grimme S, Stephan D W. Chem Commun, 2007, (47): 5072 − 5074

    8. [8]

      Stephan D W. Science, 2016, 354(6317): aaf7229  doi: 10.1126/science.aaf7229

    9. [9]

      Stephan D W and Erker G. Angew Chem Int Ed, 2015, 54(22): 6400 − 6441  doi: 10.1002/anie.201409800

    10. [10]

      Stephan D W. Acc Chem Res, 2015, 48(2): 306 − 316  doi: 10.1021/ar500375j

    11. [11]

      Simonneau A, Turrel R, Vendier L and Etienne M. Angew Chem Int Ed, 2017, 56(40): 12268 − 12272  doi: 10.1002/anie.201706226

    12. [12]

      Jian Z B, Kehr G, Daniliuc C G, Wibbeling B, Wiegand T, Siedow M, Eckert H, Bursch M, Grimme S, Erker G. J Am Chem Soc, 2017, 139(18): 6474 − 6483  doi: 10.1021/jacs.7b02548

    13. [13]

      Trunk M, Teichert J F and Thomas A. J Am Chem Soc, 2017, 139(10): 3615 − 3618  doi: 10.1021/jacs.6b13147

    14. [14]

      Fasano V, Curless L D, Radcliffe J E and Ingleson M J. Angew Chem Int Ed, 2017, 56(31): 9202 − 9206  doi: 10.1002/anie.201705100

    15. [15]

      Scott D J, Fuchter M J and Ashley A E. Chem Soc Rev, 2017, 46(19): 5689 − 5700  doi: 10.1039/C7CS00154A

    16. [16]

      Li S L, Li G, Meng W and Du H F. J Am Chem Soc, 2016, 138(39): 12956 − 12962  doi: 10.1021/jacs.6b07245

    17. [17]

      Han Y X, Zhang S T, He J H, Zhang Y T. J Am Chem Soc, 2017, 139(21): 7399 − 7407  doi: 10.1021/jacs.7b03534

    18. [18]

      Han Y X, Zhang S T, He J H, Zhang Y T. ACS Catal, 2018, 8(9): 8765 − 8773  doi: 10.1021/acscatal.8b01847

    19. [19]

      Zhang S T, Han Y X, He J H, Zhang Y T. J Org Chem, 2018, 83(3): 1377 − 1386  doi: 10.1021/acs.joc.7b02886

    20. [20]

      Zhang Y T, Miyake G M, Chen E Y X. Angew Chem Int Ed, 2010, 49(22): 10158 − 10162

    21. [21]

      Zhang Y T, Miyake G M, John M G, Falivene L, Caporaso L, Cavallo L, Chen E Y X. Dalton Trans, 2012, 41(30): 9119 − 9134  doi: 10.1039/c2dt30427a

    22. [22]

      He J H, Zhang Y T, Chen E Y X. Synlett, 2014, 25(11): 1534 − 1538  doi: 10.1055/s-00000083

    23. [23]

      Jia Y B, Wang Y B, Ren W M, Xu T Q, Wang J, Lu X B. Macromolecules, 2014, 47(6): 1966 − 1972  doi: 10.1021/ma500047d

    24. [24]

      Jia Y B, Ren W M, Liu S J, Xu T Q, Wang Y B, Lu X B. ACS Macro Lett, 2014, 3(9): 896 − 899  doi: 10.1021/mz500437y

    25. [25]

      Ma J, Cheng C, Sun G R, Wooley K L. Macromolecules, 2008, 41(23): 9080 − 9089  doi: 10.1021/ma802057u

    26. [26]

      Sugiyama F, Satoh K, Kamigaito M. Macromolecules, 2008, 41(9): 3042 − 3048  doi: 10.1021/ma702855s

    27. [27]

      Ishizone T, Uehara G, Hirao A, Nakahama S. Macromolecules, 1998, 31(12): 3764 − 3774  doi: 10.1021/ma971849b

    28. [28]

      Mohan Y M, Raghunadh V, Sivaram S, Baskaran D. Macromolecules, 2012, 45(8): 3387 − 3393  doi: 10.1021/ma202750b

    29. [29]

      He J H, Zhang Y T, Falivene L, Caporaso L, Cavallo L, Chen E Y X. Macromolecules, 2014, 47(22): 7765 − 7774  doi: 10.1021/ma5019389

    30. [30]

      Xu T Q, Chen E Y X. J Am Chem Soc, 2014, 136(5): 1774 − 1777  doi: 10.1021/ja412445n

    31. [31]

      Chen J W, Chen E Y X. Isr J Chem, 2015, 55(2): 216 − 225  doi: 10.1002/ijch.v55.2

    32. [32]

      Zhang Y T, Chen E Y X. Angew Chem Int Ed, 2012, 51(10): 2465 − 2469  doi: 10.1002/anie.v51.10

    33. [33]

      Zhang Y T, Schmitt M, Falivene L, Caporaso L, Cavallo L, Chen E Y X. J Am Chem Soc, 2013, 135(47): 17925 − 17942  doi: 10.1021/ja4088677

    34. [34]

      Chen J W, Chen E Y X. Molecules, 2015, 20(6): 9575 − 9590  doi: 10.3390/molecules20069575

    35. [35]

      Knaus M G M, Giuman M M, Pothig A, Rieger B. J Am Chem Soc, 2016, 138(24): 7776 − 7781  doi: 10.1021/jacs.6b04129

    36. [36]

      Ottou W N, Conde-Mendizabal E, Pascual A, Wirotius A L, Bourichon D, Vignolle J, Robert F, Landais Y, Sotiropoulos J M, Miqueu K and Taton D. Macromolecules, 2017, 50(3): 762 − 774  doi: 10.1021/acs.macromol.6b02205

    37. [37]

      Zhang Y T, Chen E Y X. Macromolecules, 2008, 41(1): 36 − 42  doi: 10.1021/ma702015w

    38. [38]

      Zhang Y T, Chen E Y X. Macromolecules, 2008, 41(17): 6353 − 6360  doi: 10.1021/ma801125y

    39. [39]

      Miyake G M, Zhang Y T, Chen E Y X. Macromolecules, 2010, 43(11): 4902 − 4908  doi: 10.1021/ma100615t

    40. [40]

      Zhang Y T, Gustafson L O, Chen E Y X. J. Am Chem Soc, 2011, 133(34): 13674 − 13684  doi: 10.1021/ja2053573

    41. [41]

      Chen J W, Gowda R R, He J H, Zhang Y T, Chen E Y X. Macromolecules, 2016, 49(21): 8075 − 8087  doi: 10.1021/acs.macromol.6b01654

    42. [42]

      Zhang Y T, Lay F, García-García P, List B, Chen E Y X. Chem Eur J, 2010, 16(34): 10462 − 10473  doi: 10.1002/chem.201000961

    43. [43]

      Fuchise K, Chen Y G, Satoh T and Kakuchi T. Polym Chem, 2013, 4(16): 4278 − 4291  doi: 10.1039/c3py00278k

    44. [44]

      Xu P F, Yao Y M, Xu X. Chem Eur J, 2017, 23(6): 1263 − 1267  doi: 10.1002/chem.201605622

    45. [45]

      Xu P F, Xu X. ACS Catal, 2017, 8(1): 198 − 202

    46. [46]

      Hosoi Y, Takasu A, Matsuoka S I, Hayashi M. J Am Chem Soc, 2017, 139(42): 15005 − 15012  doi: 10.1021/jacs.7b06897

    47. [47]

      Gowda, R R, Chen, E Y X. Philos Trans R Soc, A, 2017, 375: 20170003  doi: 10.1098/rsta.2017.0003

    48. [48]

      Hu L, Zhao W C, He J H, Zhang Y T. Molecules, 2018, 23(3): 665  doi: 10.3390/molecules23030665

    49. [49]

      Hu L, He J H, Zhang Y T, Chen E Y X. Macromolecules, 2018, 51(4): 1296 − 1307  doi: 10.1021/acs.macromol.7b02647

    50. [50]

      Wang Q Y, Zhao W C, Zhang S T, He J H, Zhang Y T, Chen E Y X. ACS Catal, 2018, 8(4): 3571 − 3578  doi: 10.1021/acscatal.8b00333

    51. [51]

      Beckett M A, Brassington D S, Coles S J, Hursthouse M B. Inorg Chem Commun, 2000, 3(10): 530 − 533  doi: 10.1016/S1387-7003(00)00129-5

    52. [52]

      Heiden Z M, Lathem A P. Organometallics, 2015, 34(10): 1818 − 1827  doi: 10.1021/om5011512

    53. [53]

      McGraw M, Chen E Y X. ACS Catal, 2018, 8(10): 9877 − 9887  doi: 10.1021/acscatal.8b03017

    54. [54]

      Urbas A M, Maldovan M, DeRege P, Thomas E L. Adv Mater, 2002, 14(24): 1850 − 1853  doi: 10.1002/adma.200290018

    55. [55]

      Yoon J, Lee W, Thomas E L. Adv Mater, 2006, 18(20): 2691 − 2694  doi: 10.1002/(ISSN)1521-4095

    56. [56]

      Rzayev J, Penelle J. Angew Chem Int Ed, 2004, 43(13): 1691 − 1694  doi: 10.1002/(ISSN)1521-3773

    57. [57]

      Arita T, Kayama Y, Ohno K, Tsujii Y, Fukuda T. Polymer, 2008, 49(10): 2426 − 2429  doi: 10.1016/j.polymer.2008.03.026

    58. [58]

      Bai Y, He J H, Zhang Y T. Angew Chem Int Ed, 2018, 57(52): 17230 − 17234  doi: 10.1002/anie.v57.52

    59. [59]

      Wünsche M A, Mehlmann P, Witteler T, Buß F, Rathmann P, Dielmann F. Angew Chem Int Ed, 2015, 54(40): 11857 − 11860  doi: 10.1002/anie.201504993

    60. [60]

      Hong M, Chen J W, Chen E Y X. Chem Rev, 2018, 118(20): 10551 − 10616  doi: 10.1021/acs.chemrev.8b00352

    61. [61]

      Dove A, Sardon H, Naumann S. Organic Catalysis for Polymerisation. London: The Royal Society of Chemistry, 2019. 473 – 530

    62. [62]

      Webster O W, Hertler W R, Sogah D Y, Farnham W B, Rajanbabu T V. J Am Chem Soc, 1983, 105(17): 5706 − 5708  doi: 10.1021/ja00355a039

    63. [63]

      Webster O W. J Polym Sci, Part A: Polym Chem, 2000, 38(16): 2855 − 2860  doi: 10.1002/(ISSN)1099-0518

    64. [64]

      Chen E Y X. Chem Rev, 2009, 109(11): 5157 − 5214  doi: 10.1021/cr9000258

    65. [65]

      Chen E Y X. Dalton Trans, 2009, 0(41): 8784 − 8793

    66. [66]

    67. [67]

    68. [68]

      Lu W, Wang Y Y, Wang W Y, Cheng S W, Zhu J H, Xu Y W, Hong K L, Kang N G, Mays J. Polym Chem, 2017, 8(37): 5741 − 5748  doi: 10.1039/C7PY01225J

    69. [69]

      Lu W, Goodwin A, Wang Y Y, Yin P C, Wang W Y, Zhu J H, Wu T, Lu X Y, Hu B, Hong K L, Kang N G, Mays J. Polym Chem, 2018, 9(2): 160 − 168  doi: 10.1039/C7PY01518F

    70. [70]

    71. [71]

  • 加载中
    1. [1]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    4. [4]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    5. [5]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    6. [6]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    7. [7]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    8. [8]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    11. [11]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    12. [12]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    13. [13]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    14. [14]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    17. [17]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    18. [18]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    19. [19]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(0)
  • Abstract views(172)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return