Citation: Xue-yu Dou, Xing Wang, De-cheng Wu. Study of Disulfide-exchange Dynamic Cross-linking Mechanism for Controlled Construction of Hydrogels[J]. Acta Polymerica Sinica, ;2019, 50(5): 429-441. doi: 10.11777/j.issn1000-3304.2019.18263 shu

Study of Disulfide-exchange Dynamic Cross-linking Mechanism for Controlled Construction of Hydrogels

  • Corresponding author: De-cheng Wu, dcwu@iccas.ac.cn
  • Received Date: 7 December 2018
    Revised Date: 14 January 2019
    Available Online: 26 February 2019

  • Hydrogels, as a kind of three-dimensional (3D) network of polymer chains constructed by physical or chemical crosslinkers, possess significant potentials in wound healing, drug delivery, and tissue engineering. In recent years, stimuli-responsive hydrogels have received increasing interests on account of their fundamentally architectural features and controllably functional performances under various external stimuli, such as pH, temperature, electricity, redox, and light. Wherein, various hydrogels embedded with dynamic covalent crosslinking networks have been widely developed for high-performance functional materials since dynamic covalent bond could break and reform reversibly under suitable conditions, combining the reversibility of supramolecular non-covalent bond and the robustness of covalent bond. Herein, we demonstrate a facile and universal approach to create "living" controlled in situ gelling systems based on a thiol-disulfide exchange reaction. Thiol-disulfide exchange reaction is reversibly activated or terminated by deprotonating free thiols or protonating thiolates under different pH conditions with an "on/off" function, resulting in dissociation of shells and cross-linking of cores, and thus dynamically optimizing hydrogel structures: from solution to loose and compact hydrogels in macroscopic dimensions. This "living" controlled in situ gelation process can be optionally activated, controllably terminated and interrupted, and reinitiated by external stimuli whenever needed. Associated with an inverse emulsion technique, the controlled cross-linking strategy can be utilized to produce micro/nanoscale hydrogels in a confined space with flexible architectures and designable performances. Under this circumstance, multilayered hydrogel particles with each tailor-made layer are also prepared using the controlled in situ gelation method in association with a seed emulsion technique. By tailoring thiol-disulfide exchange reaction rate in a dilute aqueous solution, a dynamic and programmable morphology and size evolution is well-performed via a hierarchical self-assembly strategy, providing unique advantages to fabricate intelligent drug carriers with high loading efficiency. Furthermore, UV-triggered thiol-disulfide exchange reaction has been developed to prepare the hydrogels with a radical-centered disulfide exchange mechanism, opening up another cross-linking strategy for precise spatiotemporal control on a photochemical gelation process by varying irradiation time. Since these hydrogels are formed through disulfide shuffling of the cores that can be easily cleaved in response to glutathione, these tailor-made hydrogels are biocompatible, biodegradable, and easily fabricated with desired shapes, sizes, and properties in controllable drug delivery systems. In this contribution, we summarize and review this disulfide-exchange-based cross-linking strategy on acquisition of smart hydrogels with adjustable structures and fine-tunable properties in widely biomedical applications.
  • 加载中
    1. [1]

      Richtering W, Saunders B R. Soft Matter, 2014, 10(21): 3695 − 3702  doi: 10.1039/C4SM00208C

    2. [2]

      Sangeetha N M, Maitra U. Chem Soc Rev, 2005, 34(10): 821 − 836  doi: 10.1039/b417081b

    3. [3]

      Shibayama M, Tanaka T. Adv Polym Sci, 1993, 106: 1 − 62  doi: 10.1007/BFb0025859

    4. [4]

      Gil E S, Hudson S M. Prog Polym Sci, 2004, 29(12): 1173 − 1222  doi: 10.1016/j.progpolymsci.2004.08.003

    5. [5]

      Burdick J A, Murphy W L. Nat Commun, 2012, 3: 1269  doi: 10.1038/ncomms2271

    6. [6]

      Matanović M R, Kristl J, Grabnar P A. Int J Pharm, 2014, 472(1-2): 262 − 275  doi: 10.1016/j.ijpharm.2014.06.029

    7. [7]

    8. [8]

      Shewan H M, Stokes J R. J Food Eng, 2013, 119(4): 781 − 792  doi: 10.1016/j.jfoodeng.2013.06.046

    9. [9]

      Liu L S, Kost J, Yan F, Spiro R C. Polymer, 2012, 4(2): 997 − 1011  doi: 10.3390/polym4020997

    10. [10]

      Tran V V, Park D, Lee Y C. Environ Sci Pollut Res, 2018, 25(25): 24569 − 24599  doi: 10.1007/s11356-018-2605-y

    11. [11]

      Yang J M, Olanrele O S, Zhang X, Hsu C C. Adv Exp Med Biol, 2018, 1077: 197 − 224  doi: 10.1007/978-981-13-0947-2

    12. [12]

      Hoffman A S. Adv Drug Deliver Rev, 2012, 64: 18 − 23  doi: 10.1016/j.addr.2012.09.010

    13. [13]

      Seliktar D. Science, 2012, 336(6085): 1124 − 1128  doi: 10.1126/science.1214804

    14. [14]

      Zhang Y S, Khademhosseini A. Science, 2017, 356(6337): eaaf3627  doi: 10.1126/science.aaf3627

    15. [15]

      Odent J, Wallin T J, Pan W Y, Kruemplestaedter K, Shepherd R F, Giannelis E P. Adv Funct Mater, 2017, 27(33): 1701807  doi: 10.1002/adfm.201701807

    16. [16]

      Li P P, Jin Z Y, Peng L L, Zhao F, Xiao D, Jin Y, Yu G H. Adv Mater, 2018, 30(18): e1800124  doi: 10.1002/adma.201800124

    17. [17]

      Zhang X H, Sheng N N, Wang L N, Tan Y Q, Liu C Z, Xia Y Z, Nie Z H, Sui K Y. Mater Horiz, 2019, 6(2): 326 − 333  doi: 10.1039/C8MH01188E

    18. [18]

    19. [19]

      Ladet S, David L, Domard A. Nature, 2008, 452(7183): 76 − 79  doi: 10.1038/nature06619

    20. [20]

      Jeong B, Bae Y H, Lee D S, Kim S W. Nature, 1997, 388(6645): 860 − 862  doi: 10.1038/42218

    21. [21]

      Murdan S. J Control Release, 2003, 92(1-2): 1 − 17  doi: 10.1016/S0168-3659(03)00303-1

    22. [22]

      Moriyama K, Minamihata K, Wakabayashi R, Goto M, Kamiya N. Chem Commun, 2014, 50(44): 5895 − 5898  doi: 10.1039/C3CC49766F

    23. [23]

      Collier J H, Hu B H, Ruberti J W, Zhang J, Shum P, Thompson D H, Messersmith P B. J Am Chem Soc, 2001, 123(38): 9463 − 9464  doi: 10.1021/ja011535a

    24. [24]

      Haines L A, Rajagopal K, Ozbas B, Salick D A, Pochan D J, Schneider J P. J Am Chem Soc, 2005, 127(48): 17025 − 17029  doi: 10.1021/ja054719o

    25. [25]

      Deng G H, Tang C M, Li F Y, Jiang H F, Chen Y M. Macromolecules, 2010, 43(3): 1191 − 1194  doi: 10.1021/ma9022197

    26. [26]

    27. [27]

      Rong Q F, Lei W W, Chen L, Yin Y A, Zhou J J, Liu M J. Angew Chem Int Ed, 2017, 56(45): 14159 − 14163  doi: 10.1002/anie.201708614

    28. [28]

      Yang X F, Liu G Q, Peng L, Guo J H, Tao L, Yuan J Y, Chang C Y, Wei Y, Zhang L N. Adv Funct Mater, 2017, 27(40): 1703174  doi: 10.1002/adfm.v27.40

    29. [29]

      Ma C X, Lu W, Yang X X, He J, Le X X, Wang L, Zhang J W, Serpe M J, Huang Y J, Chen T. Adv Funct Mater, 2018, 28(7): 1704568  doi: 10.1002/adfm.v28.7

    30. [30]

    31. [31]

    32. [32]

      Lu W, Le X X, Zhang J W, Huang Y J, Chen T. Chem Soc Rev, 2017, 46(5): 1284 − 1294  doi: 10.1039/C6CS00754F

    33. [33]

      Rowan S J, Cantrill S J, Cousins G R L, Sanders J K M, Stoddart J F. Angew Chem Int Ed, 2002, 41(6): 898 − 952  doi: 10.1002/1521-3773(20020315)41:6<>1.0.CO;2-R

    34. [34]

      Maeda T, Otsuka H, Takahara A. Prog Polym Sci, 2009, 34(7): 581 − 604  doi: 10.1016/j.progpolymsci.2009.03.001

    35. [35]

      Zhang Z P, Rong M Z, Zhang M Q. Prog Polym Sci, 2018, 80: 39 − 93  doi: 10.1016/j.progpolymsci.2018.03.002

    36. [36]

      Deng R H, Ning Y, Jones E R, Cunningham V J, Penfold N J W, Armes S P. Polym Chem, 2017, 8(35): 5374 − 5380  doi: 10.1039/C7PY01242J

    37. [37]

      Deng R H, Derry M J, Mable C J, Ning Y, Armes S P. J Am Chem Soc, 2017, 139(22): 7616 − 7623  doi: 10.1021/jacs.7b02642

    38. [38]

      Deng G H, Li F Y, Yu H X, Liu F Y, Liu C Y, Sun W X, Jiang H F, Chen Y M. ACS Macro Lett, 2012, 1(2): 275 − 279  doi: 10.1021/mz200195n

    39. [39]

      Wei Z, Yang J H, Liu Z Q, Xu F, Zhou J X, Zrínyi M, Osada Y, Chen Y M. Adv Funct Mater, 2015, 25(9): 1352 − 1359  doi: 10.1002/adfm.v25.9

    40. [40]

      Nicolaÿ R, Kamada J, Wassen A V, Matyjaszewski K. Macromolecules, 2010, 43(9): 4355 − 4361  doi: 10.1021/ma100378r

    41. [41]

      Amamoto Y, Kamada J, Otsuka H, Takahara A, Matyjaszewski K. Angew Chem Int Ed, 2011, 50(7): 1660 − 1663  doi: 10.1002/anie.201003888

    42. [42]

      Xu J, Yang D G, Li W J, Gao Y, Chen H B, Li H M. Polymer, 2011, 52(19): 4268 − 4276  doi: 10.1016/j.polymer.2011.07.015

    43. [43]

      Amamoto Y, Higaki Y, Matsuda Y, Otsuka H, Takahara A. J Am Chem Soc, 2007, 129(43): 13298 − 13304  doi: 10.1021/ja075447n

    44. [44]

      Le X X, Lu W, Zheng J, Tong D Y, Zhao N, Ma C X, Xiao H, Zhang J W, Huang Y J, Chen T. Chem Sci, 2016, 7(11): 6715 − 6720  doi: 10.1039/C6SC02354A

    45. [45]

      Naficy S, Brown H R, Razal J M, Spinks G M, Whitten P G. Aust J Chem, 2011, 64(8): 1007 − 1025  doi: 10.1071/CH11156

    46. [46]

      Cohen Y, Ramon O, Kopelman I J, Mizrahi S. J Polym Sci, Part B: Polym Phys, 1992, 30(9): 1055 − 1067  doi: 10.1002/polb.1992.090300913

    47. [47]

      Hsu T P, Ma D S, Cohen C. Polymer, 1983, 24(10): 1273 − 1278  doi: 10.1016/0032-3861(83)90058-7

    48. [48]

      Chujo Y, Sada K, Naka A, Nomura R, Saegusa T. Macromolecules, 1993, 26(5): 883 − 887  doi: 10.1021/ma00057a001

    49. [49]

      Lei Z Q, Xiang H P, Yuan Y J, Rong M Z, Zhang M Q. Chem Mater, 2014, 26(6): 2038 − 2046  doi: 10.1021/cm4040616

    50. [50]

      Laer K V, Hamilton C J, Messens J. Antioxid Redox Sign, 2013, 18(13): 1642 − 1653  doi: 10.1089/ars.2012.4964

    51. [51]

      Fernandes P A, Ramos M J. Chem Eur J, 2004, 10(1): 257 − 266  doi: 10.1002/(ISSN)1521-3765

    52. [52]

      Zhang L, Liu W G, Lin L, Chen D Y, Stenzel M H. Biomacromolecules, 2008, 9(11): 3321 − 3331  doi: 10.1021/bm800867n

    53. [53]

      You Y Z, Hong C Y, Pan C Y. Macromolecules, 2009, 42(3): 573 − 575  doi: 10.1021/ma802403w

    54. [54]

      You Y Z, Yu Z Q, Cui M M, Hong C Y. Angew Chem Int Ed, 2010, 49(6): 1099 − 1102  doi: 10.1002/anie.v49:6

    55. [55]

      Wu D C, Loh X J, Wu Y L, Lay C L, Liu Y. J Am Chem Soc, 2012, 132(43): 15140 − 15143

    56. [56]

      Cheng W R, Wu D C, Liu Y. Biomacromolecules, 2016, 17(10): 3115 − 3126  doi: 10.1021/acs.biomac.6b01043

    57. [57]

      Yang Y Y, Wang X, Hu Y, Hu H, Wu D C, Xu F J. ACS Appl Mater Interfaces, 2014, 6(2): 1044 − 1052  doi: 10.1021/am404585d

    58. [58]

      Wang X, Yang Y Y, Gao P Y, Li D, Yang F, Shen H, Guo H X, Xu F J, Wu D C. Chem Commun, 2014, 50(46): 6126 − 6129  doi: 10.1039/c4cc01859a

    59. [59]

      Bu Y Z, Sun G F, Zhang L C, Liu J H, Yang F, Tang P F, Wu D C. Chinese J Polym Sci, 2017, 35(10): 1231 − 1242  doi: 10.1007/s10118-017-1958-x

    60. [60]

      Wang X, Li D, Yang F, Shen H, Li Z B, Wu D C. Polym Chem, 2013, 4(17): 4596 − 4600  doi: 10.1039/c3py00811h

    61. [61]

      Xu S J, Liu J H, Zhang L C, Yang F, Tang P F, Wu D C. J Mater Chem B, 2017, 5(30): 6110 − 6118  doi: 10.1039/C7TB00790F

    62. [62]

      Zhuang Y P, Shen H, Yang F, Wang X, Wu D C. RSC Adv, 2016, 6(59): 53804 − 53812  doi: 10.1039/C6RA08404D

    63. [63]

      Huang D, Yang F, Wang X, Shen H, You Y Z, Wu D C. Polym Chem, 2016, 7(40): 6154 − 6158  doi: 10.1039/C6PY01511E

    64. [64]

      Wang L H, Wu D C, Xu H X, You Y Z. Angew Chem Int Ed, 2016, 55(2): 755 − 759  doi: 10.1002/anie.201508695

    65. [65]

      Liu B X, Zhou X, Yang F, Shen H, Wang S G, Zhang B, Zhi G, Wu D C. Polym Chem, 2014, 5(5): 1693 − 1701  doi: 10.1039/C3PY01144E

    66. [66]

      Wang X, Wang J, Yang Y Y, Yang F, Wu D C. Polym Chem, 2017, 8(26): 3901 − 3909  doi: 10.1039/C7PY00698E

    67. [67]

      Li D W, Niu Y G, Yang Y Y, Wang X, Yang F, Shen H, Wu D C. Chem Commun, 2015, 51(39): 8296 − 8299  doi: 10.1039/C5CC01338K

    68. [68]

      Wang L L, Li L, Wang X, Huang D, Yang F, Shen H, Li Z C, Wu D C. Polym Chem, 2016, 7(7): 1429 − 1438  doi: 10.1039/C5PY01925G

    69. [69]

      Wang J, Wang X, Yang F, Shen H, You Y Z, Wu D C. Langmuir, 2015, 31(51): 13834 − 13841  doi: 10.1021/acs.langmuir.5b03823

    70. [70]

      Wang J, Wang X, Yang F, Shen H, You Y Z, Wu D C. Langmuir, 2014, 30(43): 13014 − 13020  doi: 10.1021/la503295z

    71. [71]

      Wang J, Li B X, Wang X, Yang F, Shen H, Wu D C. Langmuir, 2016, 32(51): 13706 − 13715  doi: 10.1021/acs.langmuir.6b03550

    72. [72]

      Wang X, Yang Y Y, Yang F, Shen H, Wu D C. Polymer, 2017, 118(2): 75 − 84

    73. [73]

      Wang X, Yang Y Y, Gao P Y, Yang F, Shen H, Guo H X, Wu D C. ACS Macro Lett, 2015, 4(12): 1321 − 1326  doi: 10.1021/acsmacrolett.5b00698

    74. [74]

      Hu X B, Tong Z, Lyon A. J Am Chem Soc, 2010, 132(33): 11470 − 11472  doi: 10.1021/ja105616v

    75. [75]

      Lu Y, Ballauff M. Prog Polym Sci, 2011, 36(6): 767 − 792  doi: 10.1016/j.progpolymsci.2010.12.003

    76. [76]

      Xiong M H, Bao Y, Yang X Z, Wang Y C, Sun B L, Wang J. J Am Chem Soc, 2012, 134(9): 4355 − 4362  doi: 10.1021/ja211279u

    77. [77]

      Zhang J, Yang F, Shen H, Wu D C. ACS Macro Lett, 2012, 1(11): 1295 − 1299  doi: 10.1021/mz300489n

    78. [78]

      Chen Y, Chen H R, Zeng D P, Tian Y B, Chen F, Feng J W, Shi J L. ACS Nano, 2010, 4(10): 6001 − 6013  doi: 10.1021/nn1015117

    79. [79]

      Mitragotri S, Anderson D G, Chen X Y, Chow E K, Ho D, Kabanov A V, Karp J M, Kataoka K, Mirkin C A, Petrosko S H, Shi J J, Stevens M M, Sun S H, Teoh S, Venkatraman S S, Xia Y N, Wang S T, Gu Z, Xu C J. ACS Nano, 2015, 9(7): 6644 − 6654  doi: 10.1021/acsnano.5b03569

    80. [80]

      Zhang J, Jia J P, Kim J P, Yang F, Wang X, Shen H, Xu S J, Yang J, Wu D C. Bioact Mater, 2018, 3: 87 − 96  doi: 10.1016/j.bioactmat.2017.06.003

    81. [81]

      Wang X, Gao P Y, Yang Y Y, Guo H X, Wu D C. Nat Commun, 2018, 9: 2772  doi: 10.1038/s41467-018-05142-3

    82. [82]

      Cao Q C, Wang X, Wu D C. Chinese J Polym Sci, 2018, 36(1): 8 − 17  doi: 10.1007/s10118-018-2061-7

    83. [83]

      Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Adv Mater, 2003, 15(14): 1155 − 1158  doi: 10.1002/adma.200304907

    84. [84]

      Liu X Y, Zhong M, Shi F K, Xu H, Xie X M. Chinese J Polym Sci, 2017, 35(10): 1253 − 1267  doi: 10.1007/s10118-017-1971-0

    85. [85]

      Yang Y Y, Wang X, Yang F, Shen H, Wu D C. Adv Mater, 2016, 28(33): 7178 − 7184  doi: 10.1002/adma.201601742

    86. [86]

      Yang Y Y, Wang X, Yang F, Wang L N, Wu D C. Adv Mater, 2018, 30(18): 1707071  doi: 10.1002/adma.201707071

    87. [87]

      Bu Y Z, Shen H, Yang F, Yang Y Y, Wang X, Wu D C. ACS Appl Mater Interfaces, 2017, 9(3): 2205 − 2212  doi: 10.1021/acsami.6b15364

    88. [88]

      Bu Y Z, Zhang L C, Liu J H, Zhang L H, Li T T, Shen H, Wang X, Yang F, Tang P F, Wu D C. ACS Appl Mater Interfaces, 2016, 8(20): 12674 − 12683  doi: 10.1021/acsami.6b03235

  • 加载中
    1. [1]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    2. [2]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    3. [3]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    4. [4]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    7. [7]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    8. [8]

      Tiantian Dai Xi Yang . Teaching Design and Reflection on the “Osmotic Pressure of Solutions” in Medical Chemistry. University Chemistry, 2025, 40(5): 268-275. doi: 10.12461/PKU.DXHX202411032

    9. [9]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    10. [10]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    11. [11]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    12. [12]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    13. [13]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    14. [14]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    15. [15]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    16. [16]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    17. [17]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

Metrics
  • PDF Downloads(0)
  • Abstract views(135)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return