Citation: Meng-xue Li, Hai-ping Wu, You-long Zhu, Chao Wang. Mechanically Adaptive Electronic Polymers: Introduction, Design and Applications[J]. Acta Polymerica Sinica, ;2019, 50(3): 247-260. doi: 10.11777/j.issn1000-3304.2019.18237 shu

Mechanically Adaptive Electronic Polymers: Introduction, Design and Applications

  • Corresponding author: Chao Wang, chaowangthu@mail.tsinghua.edu.cn
  • Received Date: 8 November 2018
    Revised Date: 11 December 2018
    Available Online: 23 January 2019

  • Mechanically adaptive polymers (MAPs) can regulate their mechanical properties in response to external stimuli or environmental changes, such as pressure, temperature, humidity, etc. In recent years, mechanically adaptive electronic polymers (MAEPs), which integrate delicate electronic functions together with mechanical adaptive properties, are expected to play important roles in such fields as wearable electronics, biomedical devices, and energy storage systems. This new type of polymer materials have attracted growing attention from both academia and industry. In this review article, a brief introduction is firstly given to mechanically adaptive electronic polymers, and several representative works in the related research field are described in the following, with specific focuses on the design principles, synthetic/preparation routes, and potential applications of these emerging polymeric materials. The key principle of MAEPs design sits in the combination of molecular chemistry and supramolecular chemistry, for it functions essentially in tuning the polymer structure and properties on a molecular level. When dynamic bonds (e.g. hydrogen bond, metal-ligand interaction, π-π stacking) are incorporated into the polymer system with electronic active units, products obtained will possess simultaneously the required electronic functions and adaptive mechanics properties. Generally, MAEPs fall into two major categories according to their working mechanisms, namely, self-healing electronic polymers and energy dissipating polymers. Elaborate material designs have realized a variety of successful demonstrations for both mechanically adaptive electrical conductors and mechanically adaptive ionic conductors. The booming of mechanically adaptive electronic polymers is expected to bring new breakthroughs in the area of wearable electronics, energy storage devices, and artificial muscles, etc. Challenges and outlook in this burgeoning area are discussed in the end. Enormous challenges still remain despite the significant advances have made already. For instance, the polymer performance requires further improvement for practical applications. Meanwhile, new polymer structures, novel synthetic methods, and innovative design strategies are also desired for the development of MAEPs.
  • 加载中
    1. [1]

      Wang S, Oh J Y, Xu J, Tran H, Bao Z. Acc Chem Res, 2018, 51(5): 1033 − 1045  doi: 10.1021/acs.accounts.8b00015

    2. [2]

      Someya T, Bao Z, Malliaras G G. Nature, 2016, 540(7633): 379 − 385  doi: 10.1038/nature21004

    3. [3]

      Zhang X, Wang C. Chem Soc Rev, 2011, 40(1): 94 − 101  doi: 10.1039/B919678C

    4. [4]

      Blaiszik B J, Kramer S L B, Olugebefola S C, Moore J S, Sottos N R, White S R. Self-Healing Polymers and Composites. In: Clarke D R, Ruhle M, Zok F eds. Annual Review of Materials Research, 2010. 179-211

    5. [5]

      Williams K A, Boydston A J, Bielawski C W. J R Soc Interface, 2007, 4(13): 359 − 362  doi: 10.1098/rsif.2006.0202

    6. [6]

      Blaiszik B J, Kramer S L, Grady M E, McIlroy D A, Moore J S, Sottos N R, White S R. Adv Mater, 2012, 24(3): 398 − 401  doi: 10.1002/adma.201102888

    7. [7]

      Li Y, Chen S S, Wu M C, Sun J Q. Adv Mater, 2012, 24(33): 4578 − 4582  doi: 10.1002/adma.v24.33

    8. [8]

      Tee B C, Wang C, Allen R, Bao Z. Nat Nanotechnol, 2012, 7(12): 825 − 832  doi: 10.1038/nnano.2012.192

    9. [9]

      Wang H, Zhu B, Jiang W, Yang Y, Leow W R, Wang H, Chen X. Adv Mater, 2014, 26(22): 3638 − 3643  doi: 10.1002/adma.v26.22

    10. [10]

      Wang C, Wu H, Chen Z, McDowell M T, Cui Y, Bao Z. Nat Chem, 2013, 5(12): 1042 − 1048  doi: 10.1038/nchem.1802

    11. [11]

      Chen Z, Wang C, Lopez J, Lu Z D, Cui Y, Bao Z A. Adv Energy Mater, 2015, 5(8)

    12. [12]

      Choi S, Kwon T W, Coskun A, Choi J W. Science, 2017, 357(6348): 279 − 283  doi: 10.1126/science.aal4373

    13. [13]

      Kang S, Jones A R, Moore J S, White S R, Sottos N R. Adv Funct Mater, 2014, 24(20): 2947 − 2956  doi: 10.1002/adfm.v24.20

    14. [14]

      So J H, Thelen J, Qusba A, Hayes G J, Lazzi G, Dickey M D. Adv Funct Mater, 2009, 19(22): 3632 − 3637  doi: 10.1002/adfm.v19:22

    15. [15]

      Odom S A, Caruso M M, Finke A D, Prokup A M, Ritchey J A, Leonard J H, White S R, Sottos N R, Moore J S. Adv Funct Mater, 2010, 20(11): 1721 − 1727  doi: 10.1002/adfm.201000159

    16. [16]

      Odom S A, Chayanupatkul S, Blaiszik B J, Zhao O, Jackson A C, Braun P V, Sottos N R, White S R, Moore J S. Adv Mater, 2012, 24(19): 2578 − 2581, 2509  doi: 10.1002/adma.v24.19

    17. [17]

      Kang H S, Kim H T, Park J K, Lee S. Adv Functl Mater, 2014, 24(46): 7273 − 7283  doi: 10.1002/adfm.v24.46

    18. [18]

      Li Y, Chen S, Wu M, Sun J. ACS Appl Mater Interfaces, 2014, 6(18): 16409 − 16415  doi: 10.1021/am504829z

    19. [19]

      Gong C, Liang J, Hu W, Niu X, Ma S, Hahn H T, Pei Q. Adv Mater, 2013, 25(30): 4186 − 4191  doi: 10.1002/adma.201301069

    20. [20]

      Lai J C, Mei J F, Jia X Y, Li C H, You X Z, Bao Z. Adv Mater, 2016, 28(37): 8277 − 8282  doi: 10.1002/adma.v28.37

    21. [21]

      Pyo K H, Lee D H, Kim Y, Kim J W. J Mater Chem C, 2016, 4(5): 972 − 977  doi: 10.1039/C5TC04030B

    22. [22]

      D'Elia E, Barg S, Ni N, Rocha V G, Saiz E. Adv Mater, 2015, 27(32): 4788 − 4794  doi: 10.1002/adma.v27.32

    23. [23]

      Wu T F, Chen B Q. J Mater Chem C, 2016, 4(19): 4150 − 4154  doi: 10.1039/C6TC01052K

    24. [24]

      Guo K, Zhang D L, Zhang X M, Zhang J, Ding L S, Li B J, Zhang S. Angew Chem Int Ed, 2015, 54(41): 12127 − 12133  doi: 10.1002/anie.201505790

    25. [25]

      Shi Y, Wang M, Ma C, Wang Y, Li X, Yu G. Nano Lett, 2015, 15(9): 6276 − 6281  doi: 10.1021/acs.nanolett.5b03069

    26. [26]

      Keplinger C, Sun J Y, Foo C C, Rothemund P, Whitesides G M, Suo Z. Science, 2013, 341(6149): 984 − 987  doi: 10.1126/science.1240228

    27. [27]

      Huang Y, Zhong M, Huang Y, Zhu M, Pei Z, Wang Z, Xue Q, Xie X, Zhi C. Nat Commun, 2015, 6(10310)

    28. [28]

      Cao Y, Morrissey T G, Acome E, Allec S I, Wong B M, Keplinger C, Wang C. Adv Mater, 2017, 29(10): 1605099  doi: 10.1002/adma.201605099

    29. [29]

      Zhao X. Soft Matter, 2014, 10(5): 672 − 687  doi: 10.1039/C3SM52272E

    30. [30]

      Lake G J, Thomas A G. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1967, 300(1460): 108 − 119

    31. [31]

      Sun J Y, Zhao X, Illeperuma W R, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J, Suo Z. Nature, 2012, 489(7414): 133 − 136  doi: 10.1038/nature11409

    32. [32]

      Zhao X, Huebsch N, Mooney D J, Suo Z. J Appl Phys, 2010, 107(6): 63509  doi: 10.1063/1.3343265

    33. [33]

      Yang W, Furukawa H, Gong J P. Adv Mater, 2008, 20(23): 4499 − 4503  doi: 10.1002/adma.v20:23

    34. [34]

      Huang T, Xu H G, Jiao K X, Zhu L P, Brown H R, Wang H L. Adv Mater, 2007, 19(12): 1622 − 1626  doi: 10.1002/(ISSN)1521-4095

    35. [35]

      Azuma C, Yasuda K, Tanabe Y, Taniguro H, Kanaya F, Nakayama A, Chen Y M, Gong J P, Osada Y. J Biomed Mater Res A, 2007, 81(2): 373 − 380

    36. [36]

      Lee K Y, Kong H J, Larson R G, Mooney D J. Adv Mater, 2003, 15(21): 1828 − 1832  doi: 10.1002/(ISSN)1521-4095

    37. [37]

      Tuncaboylu D C, Sari M, Oppermann W, Okay O. Macromolecules, 2011, 44(12): 4997 − 5005  doi: 10.1021/ma200579v

    38. [38]

      Myung D, Koh W U, Ko J M, Hu Y, Carrasco M, Noolandi J, Ta C N, Frank C W. Polymer, 2007, 48(18): 5376 − 5387  doi: 10.1016/j.polymer.2007.06.070

    39. [39]

      Lin S, Yuk H, Zhang T, Parada G A, Koo H, Yu C, Zhao X. Adv Mater, 2016, 28(22): 4497 − 4505  doi: 10.1002/adma.v28.22

    40. [40]

      Yuk H, Zhang T, Parada G A, Liu X, Zhao X. Nat Commun, 2016, 7(12028)

    41. [41]

      Chen B, Lu J J, Yang C H, Yang J H, Zhou J, Chen Y M, Suo Z. ACS Appl Mater Interfaces, 2014, 6(10): 7840 − 7845  doi: 10.1021/am501130t

    42. [42]

      Wu H, Cao Y, Su H, Wang C. Angew Chem Int Ed, 2018, 57(5): 1361 − 1365  doi: 10.1002/anie.201709774

  • 加载中
    1. [1]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    2. [2]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    3. [3]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    4. [4]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    5. [5]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    6. [6]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    7. [7]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    8. [8]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    9. [9]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    10. [10]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    11. [11]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    12. [12]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

    13. [13]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    14. [14]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    15. [15]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    16. [16]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    17. [17]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    18. [18]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    19. [19]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    20. [20]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

Metrics
  • PDF Downloads(0)
  • Abstract views(263)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return