Citation: Zi-wei Si, Yu-feng Tian, Jing Zhao, Wei Zhang. Fabrication of a Janus Single-layered Covalent Organic Framework[J]. Acta Polymerica Sinica, ;2019, 50(3): 319-326. doi: 10.11777/j.issn1000-3304.2019.18234 shu

Fabrication of a Janus Single-layered Covalent Organic Framework

  • Breaking the out-of-plane symmetry of 2D materials, which results so-called janus 2D materials, will endow them different physical and chemical properties, and thus will further enrich their applications in different fields. In this work, we designed and fabricated a Janus single-layered covalent organic framework using an amphiphilic planar molecule (truxene), which having different chians at both sides, as monomer. This amphiphilic truxene derivative is prepared by functionalization at its three active methylene positions with hydrophilic and hydrophobic chains, respectively. Since methylene carbon is a sp3 carbon, the induced hydrophobic and hydryphilic chains are located perpendicular to the phenyl ring in truxene. After poly-condensation reaction with p-phenylenediamine at water/dichlormethane interface, a colorless membrane is formed. Fourier transform infrared spectroscopy (FTIR) spectra of the product indicated the almost complete consumption of the starting materials and the formation of imine bond. Transmission electron microscopy (TEM) images of the resulting membrane show that, the shape of product is a well-defined plate like nano-structure. Further investigation through atomic force microscopy (AFM) measurement confirmed the products from the interface consists of film with ~1 nm in thickness, corresponding to the thickness of a single-layered covalent organic framework. Due to the templating effect of water and oil interface, the hydrophilic and hydrophobic chains are orientated to water and oil phase during the poly-condensation reaction, respectively. After the formation of single layered COF, these chains are fixed at different surfaces of the resulting COF. As a consequence, the obtained COF possesses a single layered structure with two different surfaces, in another word, is a Janus covalent organic framework. Demonstrated by contact angle experiments, two surfaces of this Janus COF show different affinities to water droplets.
  • 加载中
    1. [1]

      Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666 − 669  doi: 10.1126/science.1102896

    2. [2]

      Wang Q H, Zadeh K K, Kis A, Jonathan N, Strano M S. Nature Nanotechnol, 2012, 7: 699 − 712  doi: 10.1038/nnano.2012.193

    3. [3]

      Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K. Nature, 2012, 490: 192 − 200  doi: 10.1038/nature11458

    4. [4]

      Balandin A A. Nat Mater, 2011, 10: 569 − 581  doi: 10.1038/nmat3064

    5. [5]

      Rao C N R, Srinivasan N, Vaidhyanathan R. Angew Chem Int Ed, 2004, 43: 1446 − 1496  doi: 10.1002/(ISSN)1521-3773

    6. [6]

      Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Andrea C, Rodney S, Ruoff, Pellegrini V. Science, 2015, 6217(2): 1246501

    7. [7]

      Huang X, Yin Z Y, Wu S X, Qi X Y, He Q Y, Zhang Q H, Yan Q Y, Boey F, Zhang H. Small, 2011, 14: 1876 − 1902

    8. [8]

      Li H, Lu G, Wang Y, Yin Z, Cong C, He Q, Wang L, Ding F, Yu T, Zhang H. Small, 2013, 9: 1974 − 1981  doi: 10.1002/smll.v9.11

    9. [9]

      Balendhran S, Walia S, Li Q, Ou J Z, Zhuiykov S, Kaner R B, Sriram S, Bhaskaran M, Kalantar-zadeh K. Adv Funct Mater, 2013, 23: 3952 − 3970  doi: 10.1002/adfm.v23.32

    10. [10]

      Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N. Science, 2013, 340: 12264 − 12273

    11. [11]

      Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang T W, Chang C S, Li L J, Lin T W. Adv Mater, 2012, 24: 2320 − 2325  doi: 10.1002/adma.201104798

    12. [12]

      Shi Y, Li H, Li L J. Chem Soc Rev, 2015, 44: 2744 − 2756  doi: 10.1039/C4CS00256C

    13. [13]

      Feng Q, Mao N, Wu J, Xu H, Wang C, Zhang J, Xie L. ACS Nano, 2015, 9: 7450 − 7455  doi: 10.1021/acsnano.5b02506

    14. [14]

      Hu D, Xu G, Xing L, Yan X, Wang J, Zheng J, Lu Z, Wang P, Pan X, Jiao L. Angew Chem Int Ed, 2017, 56: 3611 − 3615  doi: 10.1002/anie.201700439

    15. [15]

      Feng X, Tang Q, Zhou J, Fang J, Ding P, Sun L, Shi L. Cryst Res Technol, 2013, 48: 363 − 368  doi: 10.1002/crat.201300003

    16. [16]

      Qi H, Wang W D, Li C Y. ACS Macro Lett, 2014, 3: 675 − 678  doi: 10.1021/mz5002806

    17. [17]

      Walther A, Müller A H E. Chem Rev, 2013, 113: 5194 − 5261  doi: 10.1021/cr300089t

    18. [18]

      Wolf A, Walther A, Muller A. Macromolecules, 2011, 44: 9221 − 9229  doi: 10.1021/ma2020408

    19. [19]

      Pfeffermann M, Dong R, Graf R, Zajaczkowski W, Gorelik T, Pisula W, Narita A, Müllen K, Feng X. J Am Chem Soc, 2015, 137: 14525 − 14532  doi: 10.1021/jacs.5b09638

    20. [20]

      Ding S Y, Wang W. Chem Soc Rev, 2013, 42: 548 − 568  doi: 10.1039/C2CS35072F

    21. [21]

      Feng X, Dinga X S and Jiang D L. Chem Soc Rev, 2012, 41: 6010 − 6022  doi: 10.1039/c2cs35157a

    22. [22]

      Liu X H, Guan C Z, Wang D, Wang L J. Adv Mater, 2014, 26: 6912 − 6920  doi: 10.1002/adma.v26.40

    23. [23]

      Díaza H, Corma A. Coord Chem Rev, 2016, 311: 85 − 124  doi: 10.1016/j.ccr.2015.12.010

    24. [24]

      Mgller V, Hinaut A, Moradi M, Baljozovic M, Jung M A, Shahgaldian P, Mchwald H, Hofer G, Krcger M, King M T, Meyer E, Glatzel T, Schlgter A D. Angew Chem Int Ed, 2018, 57: 10584 − 10588  doi: 10.1002/anie.201804937

    25. [25]

      Feng X L, Schlgter A D. Angew Chem Int Ed, 2018, 57: 13748 − 13763  doi: 10.1002/anie.201803456

    26. [26]

      Murray D J, Patterson D D, Payamyar P, Bhola R, Song W, Lackinger M, Schlüter A D, King B T. J Am Chem Soc, 2015, 137: 3450 − 3453  doi: 10.1021/ja512018j

    27. [27]

      Chen Y G, Li M, Payamyar P, Zheng Z K, Sakamoto J, Schlüter A D. ACS Macro Lett, 2014, 3: 153 − 158  doi: 10.1021/mz400597k

    28. [28]

      Payamyar P, Kaja P, Vargas C R, Stemmer A, Murray D J, Johnson C J, King B T, Schiffmann F, Vondele J V, Renn A, Götzinger S, Ceroni P, Schütz A, Lee L T, Zheng Z, Sakamoto J, Schlüter A D. Adv Mater, 2014, 26: 2052 − 2058  doi: 10.1002/adma.201304705

    29. [29]

      Wang B B, Li B, Ferrier R C M, Li J C Y. Macromol Rapid Commun, 2010, 31: 169 − 175

    30. [30]

      Laird E D, Li C Y. Macromolecules, 2013, 46: 2877 − 2891  doi: 10.1021/ma400035j

    31. [31]

      Wang B B, Li B, Dong B, Zhao B, Li C Y. Macromolecules, 2010, 43: 9234 − 9238  doi: 10.1021/ma101772f

    32. [32]

      Wang B B, Li B, Dong B, Zhao B, Li C Y. Polymer, 2010, 51: 4814 − 4822  doi: 10.1016/j.polymer.2010.08.016

    33. [33]

      Wang B B, Li B, Dong B, Zhao B, Li C Y. J Am Chem Soc, 2008, 130: 11594 − 11595  doi: 10.1021/ja804192e

    34. [34]

      Li B, Ni L B, Li C Y. Macromolecules, 2008, 41: 149 − 155  doi: 10.1021/ma702047k

    35. [35]

      Li B, Li C Y. J Am Chem Soc, 2007, 129: 12 − 13  doi: 10.1021/ja0668318

    36. [36]

      Zhou T, Wang B B, Dong B, Li C Y. Macromolecules, 2012, 45: 8780 − 8789  doi: 10.1021/ma3019987

    37. [37]

      Deng R H, Liang F X, Zhou P, Zhang C L, Qu X Z, Wang Q, Li J L, Zhu J T, Yang Z Z. Adv Mater, 2014, 26: 4469 − 4472  doi: 10.1002/adma.v26.26

    38. [38]

      Liang F X, Shen K, Qu X Z, Zhang C L, Wang Q, Li J L, Liu J G, Yang Z Z. Angew Chem Int Ed, 2011, 50: 2379 − 2382  doi: 10.1002/anie.201007519

    39. [39]

      Liang F X, Zhang C L, Yang Z Z. Adv Mater, 2014, 26: 6944 − 6949  doi: 10.1002/adma.v26.40

    40. [40]

      Yang H L, Liang F X, Wang X, Chen Y, Zhang C L, Wang Q, Qu X Z, Li J L, Wu D C, Yang Z Z. Macromolecules, 2013, 46: 2754 − 2759  doi: 10.1021/ma400261y

    41. [41]

      Chen Y, Liang F X, Yang H L, Zhang C L, Wang Q, Qu X Z, Li J L, Cai Y L, Qiu D, Yang Z Z. Macromolecules, 2012, 45, 3: 1460 − 1467

    42. [42]

      Walther A, Andre X, Drechsler M, Abetz V, Müller A H E. J Am Chem Soc, 2007, 129: 6187 − 6198  doi: 10.1021/ja068153v

    43. [43]

      Walther A, Go ldel A, Mü ller A H E. Polymer, 2008, 49: 3217 − 3227  doi: 10.1016/j.polymer.2008.05.023

    44. [44]

      Sperschneider A, Schacher A F H, Tsarkova L, Böker A, Müller A H E. Macromolecules, 2010, 43: 10213 − 10215  doi: 10.1021/ma102293z

    45. [45]

      Retsch M, Walther A, Loos K, Müller A H E. Langmuir, 2008, 24: 9421 − 9429  doi: 10.1021/la8009767

    46. [46]

      Abetz L V, Müller A H E. Macromolecules, 2003, 36: 7894 − 7898  doi: 10.1021/ma0345551

    47. [47]

      Frutos O D, Granier T, Go mez-Lor B, Barbero J J, Monge A, Puebla E G, Echavarren A M. Chem Eur J, 2002, 8: 2879 − 2890  doi: 10.1002/1521-3765(20020703)8:13<2879::AID-CHEM2879>3.0.CO;2-4

    48. [48]

      Gadwal I, Sheng G, Thankamony R L, Liu Y, Li H, Lai Z P. ACS Appl Mater Interfaces, 2018, 10: 12295 − 2299  doi: 10.1021/acsami.7b19450

  • 加载中
    1. [1]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    2. [2]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    3. [3]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    6. [6]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    7. [7]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    10. [10]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    11. [11]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    12. [12]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    13. [13]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    15. [15]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    20. [20]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

Metrics
  • PDF Downloads(0)
  • Abstract views(166)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return