Citation: Jing-jing Liu, Yu-xi Xu. Three-dimensional Graphene-based Composites and Two-dimensional Polymers: Synthesis and Application in Energy Storage and Conversion[J]. Acta Polymerica Sinica, ;2019, 50(3): 219-232. doi: 10.11777/j.issn1000-3304.2019.18222 shu

Three-dimensional Graphene-based Composites and Two-dimensional Polymers: Synthesis and Application in Energy Storage and Conversion

  • Corresponding author: Yu-xi Xu, xuyuxi@fudan.edu.cn
  • Received Date: 17 October 2018
    Revised Date: 21 November 2018
    Available Online: 29 December 2018

  • A carbon sheet with single-atom thickness, graphene is unique for its nature in two-dimensional polymers (2DP). Recently, three-dimensional (3D) graphene architecture assembled from flexible 2D graphene via non-covalent interaction has attracted great attention, for the collective interaction between graphene sheets enables various functional advances while having the intrinsic properties of individual sheet well preserved. Typical macrostructures of 3D graphene involve hierarchical porosity, large specific surface area, superior mechanical strength, and excellent electrical conductivity, which endow this emerging material with great potential in catalytic, environmental, biomedical, and to the upmost importance, energy-related applications. Ever-growing concerns caused by fossil fuels about sustainability and environmental issues have urged extensive research on high-performance materials for electrochemical energy storage and conversion. Taking advantage of the controlled synthesis of novel electrochemically active nanomaterials and their efficient integration with 3D graphene framework, our group is innovatively developed several versatile strategies and successfully fabricated a series of 3D graphene composites. Carrying elaborate microstructures and synergistic effect, as-obtained materials demonstrate outstanding electrochemical performance when employed in flexible electrodes and devices such as supercapacitors, lithium/sodium-ion batteries, lithium-sulfur batteries, and electrocatalysts. Our studies have been decently recognized as effective solutions to address the impending energy problems. Meanwhile, the natural 2DP attribute of graphene has aroused great enthusiasm for rational organic synthesis of new 2DPs at the atomic or molecular level. The controllable synthesis of 2DPs with tailored molecular structure and excellent processability can promote immensely the progress of polymer synthetic chemistry. Further, it exhibits vast strength in the development of novel polymeric materials that hold desirable properties and functions rare in conventional one-dimensional polymers. Since it is challenging but meaningful in the energy arene to design and synthesize 2DPs that integrate simultaneously 2D conjugated plane, in-plane uniform micropores, and electrochemical active groups. This feature article summarizes the synthesis of 3D graphene-based composites and 2DPs progressed in our group, followed by their applications in energy storage and conversion. The contribution ends with brief discussions and outlook about the future challenges and opportunities of graphene materials and relevant research field.
  • 加载中
    1. [1]

      Geim A K, Novoselov K S. Nat Mater, 2007, 6: 183 − 191  doi: 10.1038/nmat1849

    2. [2]

      Xu Y X, Sheng K X, Li C, Shi G Q. ACS Nano, 2010, 4: 4324 − 4330  doi: 10.1021/nn101187z

    3. [3]

      Xu Y X, Wu Q, Sun Y Q, Bai H, Shi G Q. ACS Nano, 2010, 4: 7358 − 7362  doi: 10.1021/nn1027104

    4. [4]

      Wang M, Duan X D, Xu Y X. ACS Nano, 2016, 10: 7231 − 7247  doi: 10.1021/acsnano.6b03349

    5. [5]

      Xu Y X, Shi G Q, Duan X F. Acc Chem Res, 2015, 48: 1666 − 1675  doi: 10.1021/acs.accounts.5b00117

    6. [6]

      Colson J W, Dichtel W R. Nat Chem, 2013, 5: 453 − 465  doi: 10.1038/nchem.1628

    7. [7]

      Sakamoto J, van Heijst J, Lukin O, Schluter A D. Angew Chem Int Ed, 2009, 48: 1030 − 1069  doi: 10.1002/anie.v48:6

    8. [8]

      Anderson M R, Mattes B R, Kaner R B. Science, 1991, 252: 1412 − 1415  doi: 10.1126/science.252.5011.1412

    9. [9]

      Fang Q R, Wang J H, Gu S, Kaspar R B, Zhuang Z B, Zheng J, Guo H X, Qiu S L, Yan Y S. J Am Chem Soc, 2015, 137: 8352 − 8355  doi: 10.1021/jacs.5b04147

    10. [10]

      Wang S, Wang Q Y, Shao P P, Han Y Z, Gao X, Ma L, Yuan S, Ma X J, Zhou J W, Feng X, Wang B. 2017, J Am Chem Soc, 2017, 139: 4258 − 4261

    11. [11]

      Li A, Lu R F, Wang Y, Wang X, Han K L, Deng W Q. Angew Chem Int Ed, 2010, 49: 3330 − 3333  doi: 10.1002/anie.200906936

    12. [12]

      Talapaneni S N, Hwang T H, Je S H, Buyukcakir O, Choi J W, Coskun A. Angew Chem Int Ed, 2016, 128: 3158 − 3163  doi: 10.1002/ange.201511553

    13. [13]

      Xiao P T, Xu Y X. J Mater Chem A, 2018  doi: 10.1039/C8TA02820F

    14. [14]

      Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S W, Grigorieva I V, Firsov A A. Science, 2004, 306: 666 − 669  doi: 10.1126/science.1102896

    15. [15]

      Cote L J, Cruz-Silva R, Huang J. J Am Chem Soc, 2009, 131: 11027 − 11032  doi: 10.1021/ja902348k

    16. [16]

      Schwenke A M, Hoeppener S, Schubert U S. Adv Mater, 2015, 27: 4113 − 4141  doi: 10.1002/adma.v27.28

    17. [17]

      Voiry D, Yang J, Kupferberg J, Fullon R, Lee C, Jeong H Y, Shin H S, Chhowalla M. Science, 2016, 353: 1413 − 1415  doi: 10.1126/science.aah3398

    18. [18]

      Zhu Y W, Murali S, Stoller M D, Welamakanni A, Piner R D Ruoff R S. Carbon, 2010, 48: 2118 − 2122  doi: 10.1016/j.carbon.2010.02.001

    19. [19]

      Liu R Z, Zhang Y, Ning Z J, Xu Y X. Angew Chem Int Ed, 2017, 56: 15677 − 15682  doi: 10.1002/anie.201708714

    20. [20]

      Cao X H, Yin Z Y, Zhang H. Energy Environ Sci, 2017, 7: 1850 − 1866

    21. [21]

      Su D, Cortie M, Fan H, Wang G. Adv Mater, 2017, 29: 1700587 − 1700594  doi: 10.1002/adma.v29.48

    22. [22]

      Shekhah O, Liu J Fischer R A, Woll C. Chem Soc Rew, 2011, 40: 1081 − 1106  doi: 10.1039/c0cs00147c

    23. [23]

      Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodeneough J B. Angew Chem Int Ed, 2013, 52: 1946 − 1967

    24. [24]

      Bu F X, Feng X X, Jiang T C, Shakir I, Xu Y X. Chem Eur J, 2017, 23: 8358 − 8363  doi: 10.1002/chem.v23.35

    25. [25]

      Atwater H A, Polman A. Nat Mater, 2010, 9: 205 − 213  doi: 10.1038/nmat2629

    26. [26]

      Zhang D, Gokce B, Barcikowski S. Chem Rev, 2017, 117: 3990 − 4103  doi: 10.1021/acs.chemrev.6b00468

    27. [27]

      Wang H, Lee H W, Deng Y, Lu Z, Hsu P C, Liu Y, Lin D, Cui Y. Nat Commun, 2015, 6: 7261  doi: 10.1038/ncomms8261

    28. [28]

      Chen Y, Egan G C, Wan J, Zhu S, Jacob R J, Zhou W, Dai J, Wang Y, Danner V A, Yao Y, Fu K, Wang Y, Bao W, Li T, Zachariah M R, Hu L. Nat Commun, 2016, 7: 12332  doi: 10.1038/ncomms12332

    29. [29]

      Wan Bui H, Grillo F, van Ommen J R. Chem Commun, 2016, 53: 45 − 71

    30. [30]

      Xiao P T, Bu F X, Zhao R R, Imran S, Xu Y X. ACS Nano, 2018, 12: 3947 − 3953  doi: 10.1021/acsnano.8b01488

    31. [31]

      Zhang L, Wu H B, Madhavi S, Lou X W. J Am Chem Soc, 2012, 134: 17388 − 17391  doi: 10.1021/ja307475c

    32. [32]

      Hu M, Belik A A, Imura M, Mibu K, Tsujimoto Y, Yamauchi Y. Chem Mater, 2012, 24: 2698 − 2707  doi: 10.1021/cm300615s

    33. [33]

      Jiang T C, Bu F X, Feng X X, Imran S, Hao G L, Xu Y X. ACS Nano, 2017, 11: 5140 − 5147  doi: 10.1021/acsnano.7b02198

    34. [34]

      Cao X H, Zheng B, Rui X H, Shi W H, Yan Q Y, Zhang H. Angew Chem Int Ed, 2014, 53: 1404 − 1409  doi: 10.1002/anie.v53.5

    35. [35]

      Zhu X, Zhu Y, Murali S, Stoller M D, Ruoff R S. ACS Nano, 2011, 5: 3333 − 3338  doi: 10.1021/nn200493r

    36. [36]

      Bu F X, Xiao P T, Chen J D, Imran Shakir, Xu Y X. J Mater Chem A, 2018, 6: 6414 − 6421  doi: 10.1039/C7TA11111H

    37. [37]

      Bu F X, Chen W S, Gu J J, Agboola P O, Shakir I, Xu Y X. Chem Sci, 2018, 9: 7009 − 7016  doi: 10.1039/C8SC02444H

    38. [38]

      Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Chem Rev, 2014, 23: 11751 − 11787

    39. [39]

      Chung S H, Chang C H, Manthiram A. Energy Environ Sci, 2016, 9: 3188 − 3200  doi: 10.1039/C6EE01280A

    40. [40]

      Lin C, Niu C J, Xu X, Li K, Cai Z Y, Zhang Y L, Wang X P, Xu Y X, Mai L Q. Phys Chem Chem Phys, 2016, 18: 22146 − 22153  doi: 10.1039/C6CP03624D

    41. [41]

      Xiao P T, Bu F X, Yang G H, Zhang Y, Xu Y X. Adv Mater, 2017, 29: 1703324  doi: 10.1002/adma.201703324

    42. [42]

      Xiao P T, Sun L X, Liao D K, Shakir, Xu Y X. ACS Appl Mater Interfaces, 2018, 10: 33269 − 33275  doi: 10.1021/acsami.8b11883

    43. [43]

      Song Z, Zhan H, Zhou Y. Angew Chem Int Ed, 2010, 49: 8444 − 8448  doi: 10.1002/anie.201002439

    44. [44]

      Schon T B, McAllister B T, Li P F, Seferos D S. Chem Soc Rev, 2016, 45: 6345 − 6404  doi: 10.1039/C6CS00173D

    45. [45]

      Song Z, Zhou H. Energy Environ Sci, 2013, 6: 2280 − 2301  doi: 10.1039/c3ee40709h

    46. [46]

      Yang G H, Zhang Y, Huang Y S, Shakir I, Xu Y X. Phys Chem Chem Phys, 2016, 18: 31361 − 31377  doi: 10.1039/C6CP06754A

    47. [47]

      Zhang K, Guo C, Zhao Q, Niu Z, Chen J. Adv Sci, 2015, 2: 15000018

    48. [48]

      Yang G H, Bu F X, Huang Y S, Zhang Y, Imran S, Xu Y X. ChemSusChem, 2017, 10: 3419 − 3426  doi: 10.1002/cssc.201701175

    49. [49]

      Huang Y S, Li K, Liu J J, Zhong X, Duan X F, Shakir I, Xu Y X. J Mater Chem A, 2017, 5: 2710 − 2716  doi: 10.1039/C6TA09754E

    50. [50]

      Zhang Y, Huang Y S, Yang G H, Bu F X, Li K, Shakir I, Xu Y X. ACS Appl Mater Interfaces, 2017, 9: 15549 − 15556  doi: 10.1021/acsami.7b03687

    51. [51]

      Huang Y S, Li K, Yang G H, Shakir I, Xu Y X. Small, 2018, 14: 1703969  doi: 10.1002/smll.v14.13

    52. [52]

      Yang Z, Deng J, Chen X, Ren J, Peng H. Angew Chem Int Ed, 2013, 52: 13453  doi: 10.1002/anie.201307619

    53. [53]

      Li K, Liu J J, Huang Y S, Bu F X, Xu Y X. J Mater Chem A, 2017, 5: 5466 − 5474  doi: 10.1039/C6TA11224B

    54. [54]

      Zhao R R, Li K, Liu R Z, Shakir I, Xu Y X. J Mater Chem A, 2017, 5: 19098 − 19106  doi: 10.1039/C7TA05908F

    55. [55]

      Li K, Huang Y S, Liu J J, Shakir I, Xu Y X. J Mater Chem A, 2018, 6: 1802 − 1808  doi: 10.1039/C7TA09041B

    56. [56]

      Lafferentz L, Eberhardt V, Dri C, Africh C, Gomeli G, Esch F, Hecht S, Grill L. Nat Chem, 2012, 4: 215 − 220  doi: 10.1038/nchem.1242

    57. [57]

      Chen L, Hernandez Y, Feng X L, Müllen K. Angew Chem Int Ed, 2012, 51: 7640 − 7654  doi: 10.1002/anie.201201084

    58. [58]

      Bunck D N, Dichtel W R. J Am Chem Soc, 2013, 135: 14952 − 14955  doi: 10.1021/ja408243n

    59. [59]

      Liu W, Luo X, Bao Y, Liu Y P, Ning G H, Abdelwahab I, Li L, Nai C T, Hu Z G, Zhao D, Liu B, Quek S Y, Loh K P. Nat Chem, 2017, 9: 563 − 570  doi: 10.1038/nchem.2696

    60. [60]

      Kissel P, Murray D J, Wulftange WJ, Catalano V J, King B T. Nat Chem, 2014, 6: 774 − 778  doi: 10.1038/nchem.2008

    61. [61]

      Yang Y, Bu F X, Liu J J, Imran Shakir, Xu Y X. Chem Commun, 2017, 53: 7481 − 7484  doi: 10.1039/C7CC02648J

    62. [62]

      Liu J J, Zan W, Li K, Yang Y, Bu F X, Xu Y X. J Am Chem Soc, 2017, 139: 11666 − 11669  doi: 10.1021/jacs.7b05025

    63. [63]

      Waller P J, Gandara F, Yaghi O M. Acc Chem Res, 2015, 48: 3053 − 3063  doi: 10.1021/acs.accounts.5b00369

    64. [64]

      Cote A P, Benin A I, Ockwig N W, Keeffe M O, Matzger A J, Yaghi O M. Science, 2005, 310: 1166 − 1170  doi: 10.1126/science.1120411

    65. [65]

      Ding S Y, Wang W. Chem Soc Rev, 2013, 42: 548 − 568  doi: 10.1039/C2CS35072F

    66. [66]

      Shouvik M, Himadri S S, Tanay K, Rahul B. J Am Chem Soc, 2017, 139: 4513 − 4520  doi: 10.1021/jacs.7b00925

    67. [67]

      Berlanga I, Gonzalez M L R, Fierro J L G, Balleste R M, Zamora F. Small, 2011, 7: 1207 − 1211  doi: 10.1002/smll.v7.9

    68. [68]

      Chandra S, Kandambeth S, Biswal B P, Heine T, Banerjee R. J Am Chem Soc, 2013, 135: 17853 − 17861  doi: 10.1021/ja408121p

    69. [69]

      Liu J J, Lyu P B, Zhang Y, Nachtigall P, Xu Y X. Adv Mater, 2018, 30: 1705401  doi: 10.1002/adma.201705401

  • 加载中
    1. [1]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    7. [7]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    8. [8]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    9. [9]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    10. [10]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    11. [11]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    12. [12]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    15. [15]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

    16. [16]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    17. [17]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012

    18. [18]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    19. [19]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

    20. [20]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

Metrics
  • PDF Downloads(0)
  • Abstract views(149)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return