Citation: Chen-hui Liu, Jing-jing Cao, Yu Zhao, Chun-xiong Zheng, Ya-dan Zheng, Qi Liu, Zhan-zhan Zhang, Yang Liu. Low-adhesive, Positively Charged Nanocapsule for the Treatment of Drug-resistant Bacterial Biofilm Infection[J]. Acta Polymerica Sinica, ;2019, 50(3): 300-310. doi: 10.11777/j.issn1000-3304.2019.18220 shu

Low-adhesive, Positively Charged Nanocapsule for the Treatment of Drug-resistant Bacterial Biofilm Infection

  • Corresponding author: Yang Liu, yliu@nankai.edu.cn
  • Received Date: 16 October 2018
    Revised Date: 25 December 2018
    Available Online: 30 January 2019

  • Microbes with the biofilm mode of growth are highly resistant against antibiotics partially due to the ineffective antibiotic penetration to the depth of a biofilm where the bacteria reside and proliferate. To enhance the penetration of antibiotics, we herein demonstrated a delivery nanocapsule that could deliver antibiotics deeply into the deep layer of the biofilm and release the antibiotics inside. The delivery nanocapsule performs a core-shell structure. The core is formed via nanoprecipitation with two different types of antibiotics in the presence of an acid-liable polymer, which allows the effective release of the antibiotics in response to the acidic environment when reaching the deep layer of the biofilm. The shell of the delivery nanocapsule is synthesized by co-polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) and N-(3-Aminopropyl) methacrylamide hydrochloride (APM) to form a cationic and protein adsorption-resistant film encapsulating around the core. Such a core-shell structure could effectively reduce the diffusion resistance of the delivery nanocapsule into the biofilm, resulting in an enhanced penetration capability. Confocal laser scanning macroscopy (CLSM) imaging demonstrated that the nanocapsule could efficiently penetrate into the mature biofilms formed by S. aureus ATCC12600GFP. Moreover, such nanocapsules could load multiple drugs simultaneously, allowing the spontaneously co-delivery of various types of antibiotics into the biofilm. Exemplified with piperacillin and tazobactam, the co-delivery of the two types of antibiotics with the nanocapsule resulted in the synergetic therapeutic effect on the β-lactam resistance bacteria of S. aureus ATCC43300, achieving an efficient eradication of the bacteria embedded in the biofilm. In conclusion, the nanocapsule-based delivery system assisted with antibiotics in penetrating into the deep layer of biofilm and released the antibiotics in response to the acidic environment of the biofilm. Compared to directly applying antibiotics to the biofilm, the delivery of antibiotics with the nanocapsule exhibited more effective penetration and accumulation deeply inside the layer, achieving a more efficient eradication of the residual bacteria in the biofilm.
  • 加载中
    1. [1]

      Hu D F, Li H, Wang B L, Ye Z, Lei W X, Jia F, Jin Q, Ren K F, Ji J. ACS Nano, 2017, 11(9): 9330 − 9339  doi: 10.1021/acsnano.7b04731

    2. [2]

      Zhang P B, Li S L, Chen H, Wang X Y, Liu L B, Lv F T, Wang S. ACS Appl Mater Interfaces, 2017, 9(20): 16933 − 16938  doi: 10.1021/acsami.7b05227

    3. [3]

      Flemming H C, Wingender J, Szewzyk U, Steinberg P, Rice S A, Kjelleberg S. Nat Rev Microbiol, 2016, 14(9): 563 − 575  doi: 10.1038/nrmicro.2016.94

    4. [4]

      Li X N, Yeh Y C, Giri K, Mout R, Landis R F, Prakash Y S, Rotello V M. Chem Commun, 2015, 51(2): 282 − 285  doi: 10.1039/C4CC07737G

    5. [5]

      Olsen I. Eur J Clin Microbiol Infect Dis, 2015, 34(5): 877 − 886  doi: 10.1007/s10096-015-2323-z

    6. [6]

      Zheng C X, Zhao Y, Liu Y. Chinese J Polym Sci, 2017, 36(3): 322 − 346

    7. [7]

      Tran N, Tran P A. ChemPhysChem, 2012, 13(10): 2481 − 2494  doi: 10.1002/cphc.201200091

    8. [8]

    9. [9]

    10. [10]

      Guo Q Q, Zhao Y, Dai X M, Zhang T Q, Yu Y J, Zhang X G, Li C X. ACS Appl Mater Interfaces, 2017, 9(20): 16834 − 16847  doi: 10.1021/acsami.7b02775

    11. [11]

      Mu H B, Guo F, Niu H, Liu Q J, Wang S C, Duan J Y. Int J Mol Sci, 2014, 15(12): 22296 − 22308  doi: 10.3390/ijms151222296

    12. [12]

      Forrest M L, Yanez J A, Remsberg C M, Ohgami Y, Kwon G S, Davies N M. Pharm Res, 2008, 25(1): 194 − 206  doi: 10.1007/s11095-007-9451-9

    13. [13]

      Wang B D, Xu C J, Xie J, Yang Z Y, Sun S H. J Am Chem Soc, 2008, 130(44): 14436 − 14437  doi: 10.1021/ja806519m

    14. [14]

      Reisch A, Runser A, Arntz Y, Mély Y, Klymchenko A S. ACS Nano, 2015, 9(5): 5104 − 5116  doi: 10.1021/acsnano.5b00214

    15. [15]

      Zhang Z Z, Gu Y, Liu Q, Zheng C X, Xu L F, An L Y, Jin X, Liu Y, Shi L Q. Small, 2018, 14(33): 1801865  doi: 10.1002/smll.v14.33

    16. [16]

      Liu Y, Du J J, Yan M, Lau M Y, Hu J, Han H, Yang O O, Liang S, Wei W, Wang H, Li J M, Zhu X Y, Shi L Q, Chen W, Ji C, Lu Y F. Nat Nanotechnol, 2013, 8(3): 187 − 192  doi: 10.1038/nnano.2012.264

    17. [17]

      Liu Y, Busscher H J, Zhao B, Li Y F, Zhang Z K, van der Mei H C, Ren Y J, Shi L Q. ACS Nano, 2016, 10(4): 4779 − 4789  doi: 10.1021/acsnano.6b01370

    18. [18]

      Duan F, Feng X C, Jin Y, Liu D W, Yang X J, Zhou G Q, Liu D D, Li Z H, Liang X J, Zhang J C. Biomaterials, 2017, 144: 155 − 165  doi: 10.1016/j.biomaterials.2017.08.024

  • 加载中
    1. [1]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    2. [2]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    3. [3]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    4. [4]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    5. [5]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    8. [8]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    9. [9]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    10. [10]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    12. [12]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    15. [15]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    16. [16]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    17. [17]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    18. [18]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    19. [19]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(0)
  • Abstract views(99)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return