Citation: Miao-miao Li, Quan-qian Lyu, Jin-tao Zhu, Lian-bin Zhang. Polyborosiloxane-based Photonic Elastomers with Self-healing Capability[J]. Acta Polymerica Sinica, ;2019, 50(3): 271-280. doi: 10.11777/j.issn1000-3304.2019.18213 shu

Polyborosiloxane-based Photonic Elastomers with Self-healing Capability

  • Corresponding author: Lian-bin Zhang, zhanglianbin@hust.edu.cn
  • Received Date: 10 October 2018
    Revised Date: 3 November 2018
    Available Online: 26 November 2018

  • Recently, photonic crystals with short-range ordered structures have aroused extensive interest in scientific research owing to their structural color independent of angle variation. This unique property sets mateirals free from the angle-dependent color variation and plays a critical role in the practical applications involving color observation. However, such fascinating applications may be undesirably compromised by the poor durability of photonic crystals due to their delicate structures. In this study, we developed a series of polyborosiloxane-based photonic elastomers that possessed angle-independent structural color and self-healing capability. Specifically, hydroxyl-terminated poly(dimethylsiloxane) (Hydroxyl-PDMS) was reacted with boric acid (BA) by forming reversible dynamic covalent bonds, dative bonds, and hydrogen bonds, and as-obtained polyborosiloxane (PBS) elastomers were further incorporated with isotropically arranged SiO2 nanoparticles (NPs) and carbon black NPs. Optical properties of the photonic elastomers were characterized by reflection spectroscopy at varied detection angles, and angle independence was found for structural colors. Futhermore, the structural color of these elastomers could be tuned by simply adjusting the size or loading fraction of the SiO2 NPs in elastomers. The mateirals obtained had a Young’s modulus up to ~200 kPa and also exhibited mechanochromic behavior thanks to the good flexibility of polymeric matrix. Moreover, the intriguing combination of flexibility with reversible bonding endowed the photonic elastomers with a rapid self-healing ability towards superficial scratches or cuts at room temperature, which in turn afforded the necessary durabilities both optically and mechanically. In addition, since photonic elastomer films with a large area could be readily fabricated through a simple spray-coating process, the materials developed have shown great prospects for applications in color-coating, displaying, sensing, and printing.
  • 加载中
    1. [1]

    2. [2]

      Liu J, Ren J, Xie Z, Guan B, Wang J, Ikeda T, Jiang L. Nanoscale, 2018, 10(10): 4642 − 4649  doi: 10.1039/C7NR09387J

    3. [3]

      Liu J, Wang L, Zhang M, Jiang K, Song K, Wang J, Ikeda T, Jiang L. Adv Funct Mater, 2017, 27(7): 1605221 − 1605228  doi: 10.1002/adfm.v27.7

    4. [4]

    5. [5]

      Kuang M, Wang J, Jiang L. Chem Soc Rev, 2016, 45(24): 6833 − 6854  doi: 10.1039/C6CS00562D

    6. [6]

      Liu J, Xie Z, Shang Y, Ren J, Hu R, Guan B, Wang J, Ikeda T, Jiang L. ACS Appl Mater Interfaces, 2018, 10(7): 6701 − 6710  doi: 10.1021/acsami.7b17936

    7. [7]

      Oh J W, Chung W J, Heo K, Jin H E, Lee B Y, Wang E, Zueger C, Wong W, Meyer J, Kim C, Lee S Y, Kim W G, Zemla M, Auer M, Hexemer A, Lee S W. Nat Commun, 2014, 5(3): 3043 − 3050

    8. [8]

      Li Q, Zhang Y, Shi L, Qiu H, Zhang S, Qi N, Hu J, Yuan W, Zhang X, Zhang K Q. ACS Nano, 2018, 12(4): 3095 − 3102  doi: 10.1021/acsnano.7b08259

    9. [9]

      Lee G H, Choi T M, Kim B, Han S H, Lee J M, Kim S H. ACS Nano, 2017, 11(11): 11350 − 11357  doi: 10.1021/acsnano.7b05885

    10. [10]

      Wang W, Fan X, Li F, Qiu J, Umair M M, Ren W, Ju B, Zhang S, Tang B. Adv Optical Mater, 2018, 6(4): 1701093 − 1701102  doi: 10.1002/adom.v6.4

    11. [11]

    12. [12]

      Xiao F, Sun Y, Du W, Shi W, Wu Y, Liao S, Wu Z, Yu R. Adv Funct Mater, 2017, 27(42): 1702147 − 1702153  doi: 10.1002/adfm.v27.42

    13. [13]

      Jia X, Zhang T, Wang J, Wang K, Tan H, Wang J, Hu Y, Zhang L, Zhu J. Langmuir, 2018, 34(13): 3987 − 3992  doi: 10.1021/acs.langmuir.8b00186

    14. [14]

      Forster J D, Noh H, Liew S F, Saranathan V, Schreck C F, Yang L, Park J G, Prum R O, Mochrie S G, O’Hern C S, Cao H, Dufresne E R. Adv Mater, 2010, 22(26-27): 2939 − 2944  doi: 10.1002/adma.200903693

    15. [15]

      Takeoka Y, Honda M, Seki T, Ishii M, Nakamura H. ACS Appl Mater Interfaces, 2009, 1(5): 982 − 986  doi: 10.1021/am900074v

    16. [16]

      Wang F, Zhang X, Lin Y, Wang L, Zhu J. ACS Appl Mater Interfaces, 2016, 8(7): 5009 − 5016  doi: 10.1021/acsami.5b11919

    17. [17]

      Kumano N, Seki T, Ishii M, Nakamura H, Takeoka Y. Angew Chem Int Ed, 2011, 50(17): 4012 − 4015  doi: 10.1002/anie.201008182

    18. [18]

      Xia T, Luo W, Hu F, Qiu W, Zhang Z, Lin Y, Liu X Y. ACS Appl Mater Interfaces, 2017, 9(26): 22037 − 22041  doi: 10.1021/acsami.7b04653

    19. [19]

      Chen W P, Hao D Z, Hao W J, Guo X L, Jiang L. ACS Appl Mater Interfaces, 2018, 10(1): 1258 − 1265  doi: 10.1021/acsami.7b17118

    20. [20]

      Cash J J, Kubo T, Bapat A P, Sumerlin B S. Macromolecules, 2015, 48(7): 2098 − 2106  doi: 10.1021/acs.macromol.5b00210

    21. [21]

      Cui J, Del C A. Chem Commun, 2012, 48(74): 9302 − 9304  doi: 10.1039/c2cc34701f

    22. [22]

      Zhou H, Xu G, Li J, Zeng S, Zhang X, Zheng Z, Ding X, Chen W, Wang Q, Zhang W. Macromol Res, 2015, 23(12): 1098 − 1102  doi: 10.1007/s13233-015-3145-7

    23. [23]

      Wu J, Cai L H, Weitz D A. Adv Mater, 2017, 29(38): 1702616 − 1702623  doi: 10.1002/adma.201702616

    24. [24]

      Takashima Y, Yonekura K, Koyanagi K, Iwaso K, Nakahata M, Yamaguchi H, Harada A. Macromolecules, 2017, 50(11): 4144 − 4150  doi: 10.1021/acs.macromol.7b00875

    25. [25]

      Fu F, Chen Z, Zhao Z, Wang H, Shang L, Gu Z, Zhao Y. Proc Natl Acad Sci USA, 2017, 114(23): 5900 − 5905  doi: 10.1073/pnas.1703616114

    26. [26]

      Zhou J, Han P, Liu M, Zhou H, Zhang Y, Jiang J, Liu P, Wei Y, Song Y, Yao X. Angew Chem Int Ed, 2017, 56(35): 10462 − 10466  doi: 10.1002/anie.v56.35

    27. [27]

      Ge D, Lee E, Yang L, Cho Y, Li M, Gianola D S, Yang S. Adv Mater, 2015, 27(15): 2489 − 2495  doi: 10.1002/adma.201500281

    28. [28]

      Fudouzi H, Sawada T. Langmuir, 2006, 22(3): 1365 − 1368  doi: 10.1021/la0521037

    29. [29]

    30. [30]

      Wu T, Chen B. ACS Appl Mater Interfaces, 2016, 8(36): 24071 − 24078  doi: 10.1021/acsami.6b06137

    31. [31]

      Tang M, Wang W, Xu D, Wang Z. Ind Eng Chem Res, 2016, 55(49): 12582 − 12589  doi: 10.1021/acs.iecr.6b03823

    32. [32]

      Liu Z, Picken S J, Besseling N A M. Macromolecules, 2014, 47(14): 4531 − 4537  doi: 10.1021/ma500632f

    33. [33]

      Li X, Zhang D, Xiang K, Huang G. RSC Adv, 2014, 4(62): 32894 − 32901  doi: 10.1039/C4RA01877J

    34. [34]

      Zeng Q, Ding C, Li Q, Yuan W, Peng Y, Hu J, Zhang K Q. RSC Adv, 2017, 7(14): 8443 − 8452  doi: 10.1039/C6RA26526J

    35. [35]

      Takeoka Y, Yoshioka S, Takano A, Arai S, Khanin N, Nishihara H, Teshima M, Ohtsuka Y, Seki T. Angew Chem Int Ed, 2013, 52(28): 7261 − 7265  doi: 10.1002/anie.201301321

    36. [36]

      Wang F, Zhang X, Zhang L, Cao M, Lin Y, Zhu J. Dyes Pigments, 2016, 130: 202 − 208  doi: 10.1016/j.dyepig.2016.03.022

  • 加载中
    1. [1]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    2. [2]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    3. [3]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    4. [4]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    7. [7]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    8. [8]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    9. [9]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    10. [10]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    11. [11]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    12. [12]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    13. [13]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    14. [14]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    15. [15]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    16. [16]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    20. [20]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

Metrics
  • PDF Downloads(0)
  • Abstract views(272)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return