Citation: Miao Han, De-rong Li, Liu-qing Yuan, Yong-bo Lyu, Li-ming Ge, De-fu Li, Chang-dao Mu. Silver Nanoparticles Reduced by Dialdehyde Amylose and Their Application in Collagen-based Antibacterial Dressing[J]. Acta Polymerica Sinica, ;2019, 50(4): 366-374. doi: 10.11777/j.issn1000-3304.2018.18242 shu

Silver Nanoparticles Reduced by Dialdehyde Amylose and Their Application in Collagen-based Antibacterial Dressing

  • Corresponding author: Li-ming Ge, geliming159@hotmail.com
  • Received Date: 16 November 2018
    Revised Date: 28 December 2018
    Available Online: 28 January 2019

  • As the multidrug-resistant (MDR) microorganism caused by antibiotics abuse has posed a serious threat to human health and even life security, it is of great significance to study and develop new antibacterial materials for the treatment of MDR microbial infection. Silver nanoparticles (AgNPs) are prevalent choices for biomedical applications due to their robust antimicrobial activity against bacteria and fungus, especially the MDR microorganism, while their synthesis via environmentally friendly approaches remains challengeable. On the other hand, it has been increasingly valued to investigate the incorporation of AgNPs into collagen, for as-fabricated nanocomposite wound dressing can be tailored with unique biological functions, excellent biocompatibility, weak antigenicity, favorable biodegradability, and effective antibacterial activity. Herein, dialdehyde amylose (DA) with different aldehyde contents was firstly prepared by controlling the amount of sodium periodate added, and AgNPs were subsequently synthesized using the DA obtained as both eco-friendly reducing agent and stabilizer. With collagen dressing swollen directly into the DA-AgNPs aqueous solution, the final product of collagen-based antibacterial dressing (AgNPs-Col) could be afforded after freeze-drying. It is worth noting that collagen could be crosslinked by DA via Schiff’s base reaction in the process of AgNPs incorporation. In-depth exploration revealed that partially oxidized DA functioned as both a reducing agent and a stabilizer to transform AgNO3 into AgNPs after heating for 150 min, and the participation of AgNPs into DA crosslinking process endowed AgNPs-Col dressing with a dense microstructure. In addition to the desirable decrease in porosity, water absorption rate, and vapor transmission rate, as-fabricated composite dressing also demonstrated a shape memory behavior as well as repeatability between swelling and physical pressing. More importantly, AgNPs-Col dressing exhibited a strong antibacterial activity against both Gram-positive and Gram-negative bacteria while serving as a robust barrier to bacterial infiltration in the meantime. Together with an excellent performance in blood compatibility, the AgNPs-Col antibacterial dressing developed in this work has promising application prospects in the field of biomedical applications.
  • 加载中
    1. [1]

      Ito K, Saito A, Fujie T, Nishiwaki K, Miyazaki H, Kinoshita M, Saitoh D, Ohtsubo S, Takeoka S. Acta Biomater, 2015, 24: 87 − 95  doi: 10.1016/j.actbio.2015.05.035

    2. [2]

      Olsen D R, Pletonen J, Jaakko L, Chu M L, Uitto J. J Clin Invest, 1989, 83(3): 791 − 796

    3. [3]

    4. [4]

      Ge L M, Xu Y B, Li X Y, Yuan L, Tan H, Li D F, Mu C D. ACS Sustain Chem Eng, 2018, 6(7): 9153 − 9166  doi: 10.1021/acssuschemeng.8b01482

    5. [5]

      Morones J R, Elechiguerra J L, Camacho A, Holt K, Kouri J B, Ramirez J T, Yacaman M J. Nanotechnology, 2005, 16(10): 2346 − 2353

    6. [6]

      Agnihotri S, Mukherji S, Mukherji S. Nanoscale, 2013, 5(16): 7328 − 7340

    7. [7]

      Xiu Z M, Zhang Q B, Puppala H L, Colvin V L, Alvarez P J J. Nano Lett, 2012, 12(8): 4271 − 4275  doi: 10.1021/nl301934w

    8. [8]

      Feng Q L, Wu J, Chen G Q, Cui F Z, Kim T N, Kim J O. J Biomed Mater Res B, 2000, 52(4): 662 − 668  doi: 10.1002/(ISSN)1097-4636

    9. [9]

    10. [10]

      Wang H, Qiao X, Chen J, Wang X, Ding S. Mater Chem Phys, 2005, 94(2): 449 − 453

    11. [11]

      Xu W, Jin W, Lin L, Zhang C, Li Z, Li Y, Song R, Li B. Carbohyd Polym, 2014, 101: 961 − 967  doi: 10.1016/j.carbpol.2013.10.032

    12. [12]

    13. [13]

      Kim S, Choi J E, Choi J, Chung K H, Park K, Yi J, Ryu D Y. Toxicol in Vitro, 2009, 23(6): 1076 − 1084  doi: 10.1016/j.tiv.2009.06.001

    14. [14]

      Chen X, Schluesener H J. Toxicol Lett, 2008, 176(1): 1 − 12  doi: 10.1016/j.toxlet.2007.10.004

    15. [15]

    16. [16]

      Hussain S M, Hess K L, Gearhart J M, Geiss K T, Schlager J J. Toxicol in Vitro, 2005, 19(7): 975 − 983  doi: 10.1016/j.tiv.2005.06.034

    17. [17]

      Reidy B, Haase A, Luch A, Dawson K A, Lynch I. Materials, 2013, 6(6): 2295 − 2350  doi: 10.3390/ma6062295

    18. [18]

      Samberg M E, Oldenburg S J, Monteiro-Riviere N A. Environ Health Persp, 2010, 118(3): 407 − 413  doi: 10.1289/ehp.0901398

    19. [19]

      Nganga S, Moritz N, Kolakovic R, Jakobsson K, Nyman J O, Borgogna M, Travan A, Crosera M, Donati I, Vallittu P K, Sandler N. Biofabrication, 2014, 6(4): 1 − 7

    20. [20]

      Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, Semeraro S, Turco G, Gennaro R, Paoletti S. Biomacromolecules, 2009, 10: 1429 − 1435  doi: 10.1021/bm900039x

    21. [21]

      Dhar S, Murawala P, Shiras A, Pokharkar V, Prasad B L V. Nanoscale, 2012, 4(2): 563 − 567  doi: 10.1039/C1NR10957J

    22. [22]

      Emam H E, Ahmed H B. Carbohyd Polym, 2016, 135: 300 − 307  doi: 10.1016/j.carbpol.2015.08.095

    23. [23]

      Song J, Zhang P, Cheng L, Liao Y, Xu B, Bao R, Wang W, Liu W. J Mater Chem B, 2015, 3(20): 4231 − 4241  doi: 10.1039/C5TB00205B

    24. [24]

      Tan H, Wu B, Li C, Mu C D, Li H, Lin W. Carbohyd Polym, 2015, 129: 17 − 24  doi: 10.1016/j.carbpol.2015.04.029

    25. [25]

      Mu C D, Li D F, Lin W, Ding Y, Zhang G. Biopolymers, 2007, 86(4): 282 − 287  doi: 10.1002/(ISSN)1097-0282

    26. [26]

      Zi Y X, Zhu M J, Li X Y, Xu Y B, Wei H, Li D F, Mu C D. Carbohyd Polym, 2018, 192: 118 − 125  doi: 10.1016/j.carbpol.2018.03.060

    27. [27]

      Zhou Y, Li X Y, Lv Y B, Shi Y F, Zeng Y, Li D F, Mu C D. Carbohyd Polym, 2016, 138: 41 − 48  doi: 10.1016/j.carbpol.2015.11.040

    28. [28]

      Vigneshwaran N, Nachane R P, Balasubramanya R H, Varadarajan P V. Carbohyd Res, 2006, 341(12): 2012 − 2018  doi: 10.1016/j.carres.2006.04.042

    29. [29]

      Alipilakkotte S, Sreejith L. Mater Lett, 2018, 217: 33 − 38  doi: 10.1016/j.matlet.2018.01.034

    30. [30]

      Mi F L, Shyu S S, Wu Y B, Lee S T, Shyong J Y, Huang R N. Biomaterials, 2001, 22(2): 165 − 173  doi: 10.1016/S0142-9612(00)00167-8

    31. [31]

      Peles Z, Zilberman M. Acta Biomater, 2012, 8(1): 209 − 217  doi: 10.1016/j.actbio.2011.08.022

    32. [32]

      Gorbet M B, Sefton M V. Biomaterials, 2004, 25(26): 5681 − 5703  doi: 10.1016/j.biomaterials.2004.01.023

  • 加载中
    1. [1]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    2. [2]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    8. [8]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    11. [11]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    12. [12]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    13. [13]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    16. [16]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

Metrics
  • PDF Downloads(0)
  • Abstract views(117)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return