Citation: Zi-lu Zhang, Liang Xu, Chun-yu Zang, Kakuchi Toyoji, Xian-de Shen. Precise Synthesis and Thermoresponsive Property of Block Copolymers Consisting of N,N-diethylacrylamide and N,N-dimethylacrylamide[J]. Acta Polymerica Sinica, ;2019, 50(4): 384-392. doi: 10.11777/j.issn1000-3304.2018.18240 shu

Precise Synthesis and Thermoresponsive Property of Block Copolymers Consisting of N,N-diethylacrylamide and N,N-dimethylacrylamide

  • The thermoresponsive property of poly(N,N-diethylacrylamide) (PDEAAm) and its copolymer with N,N-dimethylacrylamide (DMAAm) has been studied using various types of the copolymers. The group transfer polymerization (GTP) of N,N-diethylacrylamide (DEAAm) and N,N-dimethylacrylamide (DMAAm) was carried out using tris(pentafluorophenyl borane (B(C6F5)3) as the organocatalyst and triethyl((1-methoxy-2-methylprop-1-en-1-yl)o-xy)silane (SKAEt) as the initiator to produce the random, di-, tri-, and penta-block copolymers along with the homopolymers of PDEAAm and PDMAAm. The polymerization degrees (PDs) of homopolymers were 25, 50, 100, 200, 300, and 500 for PDEAAm, 25, 50, and 100 for PDMAAm and those of all copolymers was 100, and their dispersity was in the range of 1.05–1.26. The monomer compositions (m/n) in the copolymers were 90/10, 75/25, 70/30, 65/35, 60/40, 55/45, 50/50, 25/75, and 10/90 for the random copolymer of PDEAAmm-r-PDMAAmn and 90/10, 75/25, 50/50, 25/75, and 10/90 for the di-block copolymer of PDEAAmm-b-PDMAAmn. The monomer compositions in the tri-block copolymer were PDEAAm25-b-PDMAAm50-b-PDEAAm25 and PDMAAm25-b-PDEAAm50-b-PDMAAm25, and those in the penta-block copolymer were PDEAAm20-b-PDMAAm25-b-PDEAAm50-b-PDMAAm25-b-PDEAAm20 and PDMAAm20-b-PDEAAm20-b-PDMAAm20-b-PDEAAm20-b-PDMAAm20. The thermoresponsive property concerning with a coil-globule phase transition was estimated using the temperature of cloud point (Tcp) of aqueous polymer solutions, i.e., the lower critical solution temperature (LCST). The Tcp of PDEAAm increased with the increasing PD from 36.5 °C to 29.5 °C. For PDEAAmm-r-PDMAAmn, the Tcp increased with the increasing DMAAm unit from 38.5 °C to 68.0 °C and none of the Tcps was observed for the copolymers with the m/n ratios of 25/75 and 10/90. For PDEAAmm-b-PDMAAmn, the Tcp increased with the increasing segment length of PDMAAm from 34.5 °C to 44.5 °C and no phase transition was observed for PDEAAm10-b-PDMAAm90. For the tri- and penta-block copolymers, which consist of the PDMAAm segment at both copolymer ends, PDEAAm25-b-PDMAAm50-b-PDEAAm25 and PDEAAm20-b-PDMAAm25-b-PDEAAm50-b-PDMAAm25-b-PDEAAm20 only exhibited the phase transition, such as the Tcps of 51.5 and 55.0 °C, respectively. These phase transition behaviors were confirmed by nuclear magnetic resonance spectroscopy (NMR) and dynamic light scattering (DLS) measurements. The hydrodynamic radius (Rh) of PDEAAm25-b-PDMAAm50-b-PDEAAm25 and PDEAAm20-b-PDMAAm20-b-PDEAAm20-b-PDMAAm20-b-PDEAAm20 surged from lower temperature of 45 °C to higher temperature of 75 °C.
  • 加载中
    1. [1]

      Liu F, Urban M W. Prog Polym Sci, 2010, 35(1-2): 3 − 23  doi: 10.1016/j.progpolymsci.2009.10.002

    2. [2]

      Gil E, Hudson S. Prog Polym Sci, 2004, 29(12): 1173 − 1222  doi: 10.1016/j.progpolymsci.2004.08.003

    3. [3]

      Mura S, Nicolas J, Couvreur P. Nat Mater, 2013, 12(991): 991 − 1003  doi: 10.1039/c6py90169g

    4. [4]

      Roth P J, Lowe A B. Polym Chem, 2017, 8(1): 10 − 11  doi: 10.1039/C6PY90169G

    5. [5]

      Scarpa J S, Mueller D D, Klotz I M. J Am Chem Soc, 1967, 89(24): 6024 − 6030  doi: 10.1021/ja01000a006

    6. [6]

      Crespy D, Rossi R M. Polym Int, 2007, 56(12): 1461 − 1468  doi: 10.1002/(ISSN)1097-0126

    7. [7]

      Liu R, Fraylich M, Saunders B R. Colloid Polym Sci, 2009, 287(6): 627 − 643  doi: 10.1007/s00396-009-2028-x

    8. [8]

      Hocine S, Li M H. Soft Matter, 2013, 9(25): 5839 − 5861  doi: 10.1039/c3sm50428j

    9. [9]

      Saeki S, Kuwahara N, Nakata M, Kaneko M. Polymer, 1976, 17(8): 685 − 689  doi: 10.1016/0032-3861(76)90208-1

    10. [10]

      Wei H, Cheng S X, Zhang X Z, Zhuo R X. Prog Polym Sci, 2009, 34(9): 893 − 910  doi: 10.1016/j.progpolymsci.2009.05.002

    11. [11]

      Schild H G. Prog Polym Sci, 1992, 17(2): 163 − 249  doi: 10.1016/0079-6700(92)90023-R

    12. [12]

      Plamper F A, Ruppel M, Schmalz A, Borisov O, Ballauff M, Müller A H E. Macromolecules, 2007, 40(23): 8361 − 8366  doi: 10.1021/ma071203b

    13. [13]

      Plamper F A, Ballauff M, Müller A H E. J Am Chem Soc, 2007, 129(47): 14538 − 14539  doi: 10.1021/ja074720i

    14. [14]

      Meeussen F, Nies E, Berghmans H, Verbrugghe S, Goethals E, Du Prez F. Polymer, 2000, 41(24): 8597 − 8602  doi: 10.1016/S0032-3861(00)00255-X

    15. [15]

      Salzinger S, Seemann U B, Plikhta A, Rieger B. Macromolecules, 2011, 44(15): 5920 − 5927  doi: 10.1021/ma200752d

    16. [16]

      Vancoillie G, Frank D, Hoogenboom R. Prog Polym Sci, 2014, 39(6): 1074 − 1095  doi: 10.1016/j.progpolymsci.2014.02.005

    17. [17]

      Xia Y, Yin X, Burke N A D, Stöver H D H. Macromolecules, 2005, 38(14): 5937 − 5943  doi: 10.1021/ma050261z

    18. [18]

      Zhang Y, Furyk S, Bergbreiter D E, Cremer P S. J Am Chem Soc, 2005, 127(41): 14505 − 14510  doi: 10.1021/ja0546424

    19. [19]

      Kikuchi S, Chen Y, Kitano K, Takada K, Satoh T, Kakuchi T. Polym Chem, 2015, 6(38): 6845 − 6856  doi: 10.1039/C5PY01104C

    20. [20]

      Hasegawa A, Naganawa Y, Fushimi M, Ishihara K, Yamamoto H. Org Lett, 2006, 8(15): 3175 − 3178  doi: 10.1021/ol060939a

    21. [21]

      Lessard D G, Ousalem M, Zhu X X. Can J Chem, 2001, 79(12): 1870 − 1874  doi: 10.1139/v01-180

    22. [22]

      Huber S, Jordan R. Colloid Polym Sci, 2007, 286(4): 395 − 402

    23. [23]

      Sakai N, Jin M, Sato S I, Satoh T, Kakuchi T. Polym Chem, 2014, 5(3): 1057 − 1062  doi: 10.1039/C3PY00972F

    24. [24]

      Tao X, Deng Y, Shen Z, Ling J. Macromolecules, 2014, 47(18): 6173 − 6180  doi: 10.1021/ma501131t

  • 加载中
    1. [1]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    2. [2]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    3. [3]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    4. [4]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    5. [5]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    6. [6]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    9. [9]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    10. [10]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    11. [11]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    12. [12]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    13. [13]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    14. [14]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    15. [15]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    16. [16]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    17. [17]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    18. [18]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    19. [19]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    20. [20]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

Metrics
  • PDF Downloads(0)
  • Abstract views(131)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return