Citation: Peng-jun Yuan, Miao Hong. Ring-opening Polymerizations of the “Non-strained” γ-Butyrolactone andIts Derivatives: An Overview and Outlook[J]. Acta Polymerica Sinica, ;2019, 50(4): 327-337. doi: 10.11777/j.issn1000-3304.2018.18232 shu

Ring-opening Polymerizations of the “Non-strained” γ-Butyrolactone andIts Derivatives: An Overview and Outlook

  • Corresponding author: Miao Hong, miaohong@sioc.ac.cn
  • Received Date: 3 November 2018
    Revised Date: 4 December 2018
    Available Online: 17 January 2019

  • Aliphatic polyesters are a class of technologically important biodegradable and/or biocompatible polymers and have realized wide applications in biological medicine, temporary implants for tissue engineering, and packaging. Ring-opening polymerization (ROP) has proven to be a powerful methodology to prepare large-scale polyesters with different structures and properties. However, up to date, the monomers suitable for ROP are only restricted to the cyclic esters or lactones with a relatively high strain energy, which greatly limits the development and application of this methodology. Biomass-derived γ-butyrolactone (γ-BL), commercially available at a low price, would be a desirable monomer for ROP, but it is commonly referred as "non-polymerizable" in textbooks and the literature due to low strain energy of its five-membered ring. In 2016, Hong and Chen et al. established the first efficient ROP of γ-BL under mild conditions by controlling thermodynamics and kinetic conditions, which also provided a new approach for recyclable polymers. This breakthrough work attracted the attention of the scientific researchers in a short time, and a series of new catalysts have been developed for the ROP of γ-BL and its derivatives. In this context, this review article systematically summarizes the progress of the emerging area in the past three years by focusing on the discussion of the relationship between the catalyst structure and polymerization behavior, the structure-dependent polymer properties, as well as the recyclability of the resultant polymers. The currently unmet challenges in this field, and thus the suggested corresponding future research directions, are also presented.
  • 加载中
    1. [1]

      Hillmyer M A, Tolman W B. Acc Chem Res, 2014, 47: 2390 − 2396  doi: 10.1021/ar500121d

    2. [2]

      Sarazin Y, Carpentier J F. Chem Rev, 2015, 115: 3564 − 3614  doi: 10.1021/acs.chemrev.5b00033

    3. [3]

      Zhang X, Fevre M, Jones G O, Waymouth R M. Chem Rev, 2018, 118: 839 − 885  doi: 10.1021/acs.chemrev.7b00329

    4. [4]

      Bomgardner M M. Chem Eng News, 2014, 92: 10 − 14

    5. [5]

      Bozell J J, Petersen G R. Green Chem, 2010, 12: 539 − 554  doi: 10.1039/b922014c

    6. [6]

      Martin D P. Williams S F. Biochem Eng J, 2015, 16: 97 − 105

    7. [7]

      Saiyasombata W, Molloy R, Nicholson T M, Johnson A F, Ward I M, Poshyachindac S. Polymer, 1998, 39: 5581 − 5585  doi: 10.1016/S0032-3861(97)10370-6

    8. [8]

      Duda A, Kowalski A. Thermodynamics and kinetics of ringopening polymerization. In: Dubois P, Coulembier O, Raquez J M, eds. Handbook of Ring-Opening Polymerization. Weinheim: Wiley-VCH, 2009. Chapter 1, 1 – 52

    9. [9]

      Houk K N, Jabbari A, Hall H K, Alemán C. J Org Chem, 2008, 73: 2674 − 2678  doi: 10.1021/jo702567v

    10. [10]

      Moore T, Adhikari R, Gunatillake P. Biomaterials, 2005, 26: 3771 − 3782  doi: 10.1016/j.biomaterials.2004.10.002

    11. [11]

      Oishi A, Taguchi Y, Fujita K. Japan patent, JP2003252968. 2003-09-10

    12. [12]

      Oishi A, Taguchi Y, Fujita K, Ikeda Y, Masuda T. Japan patent, JP2000281767. 2000-10-10

    13. [13]

      Yamashita K, Yamamoto K, Kadokawa J I. Chem Lett, 2014, 43: 213 − 215  doi: 10.1246/cl.130952

    14. [14]

      Hong M, Chen E Y X. Nat Chem, 2016, 8: 42 − 49  doi: 10.1038/nchem.2391

    15. [15]

      Hong M, Chen E Y X. Green Chem, 2017, 19: 3692 − 3706  doi: 10.1039/C7GC01496A

    16. [16]

      Kaminsky W, Eger C. J Anal Appl Pyrol, 2001, 58: 781 − 787

    17. [17]

      Hong M, Chen E Y X. Angew Chem Int Ed, 2016, 55: 4188 − 4193  doi: 10.1002/anie.201601092

    18. [18]

      Hong M, Tang X, Newell B S, Chen E Y X. Macromolecules, 2017, 50: 8469 − 8479  doi: 10.1021/acs.macromol.7b02174

    19. [19]

      Liu S, Ren C, Zhao N, Shen Y, Li Z. Macromol Rapid Commun, 2018, 39(24): 1800485  doi: 10.1002/marc.201800485

    20. [20]

      Zhao N, Ren C, Li H, Li Y, Liu S, Li Z. Angew Chem Int Ed, 2017, 56: 12987 − 12990  doi: 10.1002/anie.201707122

    21. [21]

      Shen Y, Zhang J, Zhao N, Liu F, Li Z. Polym Chem, 2018, 9: 2936 − 2941  doi: 10.1039/C8PY00389K

    22. [22]

      Zhang C J, Hu L F, Wu H L, Cao X H, Zhang X H. Macromolecules, 2018, 51: 8705 − 8711  doi: 10.1021/acs.macromol.8b01757

    23. [23]

      Lin L, Han D, Qin J, Wang S, Xiao M, Sun L, Meng Y. Macromolecules, 2018, 51: 9317 − 9322  doi: 10.1021/acs.macromol.8b01860

    24. [24]

      Walther P, Frey W, Naumann S. Polym Chem, 2018, 9: 3674 − 3683  doi: 10.1039/C8PY00784E

    25. [25]

      Hong M, Chen J, Chen E Y X. Chem Rev, 2018, 118: 10551 − 10616  doi: 10.1021/acs.chemrev.8b00352

    26. [26]

      Tang J, Chen E Y X. J Polym Sci, Part A: Polym Chem, 2018, 56: 2271 − 2279  doi: 10.1002/pola.v56.20

    27. [27]

      Hong M, Chen E Y X. Macromolecules, 2014, 47: 3614 − 3624  doi: 10.1021/ma5007717

    28. [28]

      Tang X, Hong M, Falivene L, Caporaso L, Cavallo L, Chen E Y X. J Am Chem Soc, 2016, 138: 14326 − 14337  doi: 10.1021/jacs.6b07974

    29. [29]

      Zhu J B, Watson E M, Tang J, Chen E Y X. Science, 2018, 360: 398 − 403  doi: 10.1126/science.aar5498

    30. [30]

      Zhu J B, Chen E Y X. Angew Chem Int Ed, 2018, Doi: 10.1002/anie.201813006

    31. [31]

      Haba O, Itabashi H. Polym J, 2013, 46: 89 − 93

    32. [32]

      Zhu J B, Chen E Y X. Angew Chem Int Ed, 2018, 57: 12558 − 12562  doi: 10.1002/anie.201808003

  • 加载中
    1. [1]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    2. [2]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    3. [3]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    4. [4]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    5. [5]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    6. [6]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    7. [7]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    8. [8]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    9. [9]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    10. [10]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    11. [11]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    12. [12]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    13. [13]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    14. [14]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    15. [15]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    16. [16]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    17. [17]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    18. [18]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

    19. [19]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

    20. [20]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012

Metrics
  • PDF Downloads(0)
  • Abstract views(233)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return