Citation: Lu Chen, Zhen-hua Zhang, Shao-qiang Luo, Ying Gao, Chen Zhang, Liu-yun Hu, Miao Du, Yi-hu Song, Qiang Zheng. Rheological Behavior of Hydroxyethylacrylate/Sodium Acryloyldimethyl Taurate Copolymer Aqueous Solution[J]. Acta Polymerica Sinica, ;2019, 50(1): 91-98. doi: 10.11777/j.issn1000-3304.2018.18156 shu

Rheological Behavior of Hydroxyethylacrylate/Sodium Acryloyldimethyl Taurate Copolymer Aqueous Solution

  • Corresponding author: Miao Du, dumiao@zju.edu.cn
  • Received Date: 5 July 2018
    Revised Date: 29 August 2018
    Available Online: 19 October 2018

  • The rheological behaviors of hydroxyethylacrylate/sodium acryloyldimethyl taurate copolymer (EMT-10) in aqueous solution have been investigated systematically. EMT-10 has been widely used as a cosmetics thickener for its excellent emulsibility/stability at relatively low content; besides, its capability of persistent thickening effect over a broad variety of novel chemical structures is conducive to their perfect compatibility with specific active ingredients. Both pyrene fluorescence observation and rheological behavior revealed that hydrogen bonding and electrostatic interactions could enhance the intramolecular hydrophobic associations among EMT-10 macromolecules in the solution system, which led to the formation of hydrophobic microdomains within EMT-10 molecules even at ultra-low concentration. In the meantime, EMT-10’s thickening capability could be promoted by the synergism of these three interactions, i.e., intermolecular hydrophobic associations, hydrogen bonding interaction, and electrostatic interaction. The viscosity of EMT-10 aqueous solution exhibited higher scaling value against concentration than neutral polymer and polyelectrolyte solutions did in the unentangled semidilute solution and entangled semidilute solution regions. Moreover, it was insensitive to temperature due to the counteracting effect between hydrophobic interaction and hydrogen bonding interaction. Yielding occurred when solution concentration was higher than 0.3 wt% and the yielding stress increased with mounting concentration. Dual yielding behaviors showed up at solution concentration above 1 wt%, of which the second yielding was related to the formation and breakup of clusters that resulted from intramolecular hydrophobic associations and hydrogen bonding interaction under high shearing. Various additives could affect the rheological behaviors of EMT-10 solution remarkably. Viscosity of 1.5 wt% EMT-10 solution decreased with the addition of surfactants, urea, and salt, among which salt exhibited a sharp reducing effect. Compared with poly(vinyl alcohol) and poly(ethylene oxide), EMT-10 implicated strong intermolecular interactions including chain entanglements, electrostatic interaction, hydrophobic interaction, and hydrogen bonding interaction.
  • 加载中
    1. [1]

      Stern P. Rheol Acta, 1988, 27(4): 448 − 448

    2. [2]

      Pickering S U. J Chem Soc, 1907, 91: 2001 − 2021  doi: 10.1039/CT9079102001

    3. [3]

    4. [4]

    5. [5]

      Kalyanasundaram K, Thomas J K. J Am Chem Soc, 1977, 99(7): 2039 − 2044  doi: 10.1021/ja00449a004

    6. [6]

      Du M, Ma Y J, Su H, Wang X, Zheng Q. RSC Adv, 2015, 5(43): 33905 − 33913  doi: 10.1039/C5RA05017K

    7. [7]

      Su H, Wang X, Du M, Song Y H, Zheng Q. RSC Adv, 2016, 6(7): 5695 − 5702  doi: 10.1039/C5RA24777B

    8. [8]

      Cross M M. J Colloid Sci, 1965, 20(5): 417 − 437  doi: 10.1016/0095-8522(65)90022-X

    9. [9]

      Dou S, Colby R H. J Polym Sci, Part B: Polym Phys, 2006, 44(14): 2001 − 2013  doi: 10.1002/(ISSN)1099-0488

    10. [10]

      Konop A J, Colby R H. Langmuir, 1999, 15(1): 58 − 65  doi: 10.1021/la980782y

    11. [11]

      Emady H, Caggioni M, Spicer P. J Rheol, 2013, 57(6): 1761 − 1772  doi: 10.1122/1.4824471

    12. [12]

      Pierre-Gilles de Gennes. Scaling Concepts in Polymer Physics. Ithaca: Cornell University Press, 1979. 221 – 222

    13. [13]

      Gouveia L M, Muller A J. Rheol Acta, 2009, 48(2): 163 − 175  doi: 10.1007/s00397-008-0319-7

    14. [14]

      Aditya J, Wee M, Matia-Merino L, Goh K K T, McKinley G H. Carbohydr Polym, 2015, 123: 136 − 145  doi: 10.1016/j.carbpol.2015.01.006

    15. [15]

      Terech P, Dourdain S, Maitra U, Bhat S. J Phys Chem B, 2009, 113(14): 4619 − 4630  doi: 10.1021/jp809336g

    16. [16]

      Williams P A. Food Emulsions: Principles, Practice, and Techniques. Oxford: Blackwell Science Ltd. 223 – 224

    17. [17]

      Goddard E D, Hannan R B. J Am Oil Chem Soc, 1997, 54(12): 561 − 566

    18. [18]

      Vakarelski I U, Brown S C, Rabinovich Y I, Moudgil B M. Langmuir, 2004, 20(5): 1724 − 1731  doi: 10.1021/la0352873

    19. [19]

    20. [20]

  • 加载中
    1. [1]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    2. [2]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    3. [3]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    6. [6]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    7. [7]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    8. [8]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    9. [9]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    10. [10]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    11. [11]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    12. [12]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    13. [13]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    14. [14]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    15. [15]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    16. [16]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    17. [17]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    18. [18]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    19. [19]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    20. [20]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

Metrics
  • PDF Downloads(0)
  • Abstract views(209)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return