Citation: Yu-kun Jian, Wei Lu, Jia-wei Zhang, Tao Chen. Research Progress in Supramolecular Shape Memory Hydrogels[J]. Acta Polymerica Sinica, ;2018, 0(11): 1385-1399. doi: 10.11777/j.issn1000-3304.2018.18150 shu

Research Progress in Supramolecular Shape Memory Hydrogels

  • As one of the most important stimuli-responsive polymeric materials, shape memory polymers could fix temporary shapes and subsequently recover to the original shape under specific stimuli, and have thus aroused tremendous attention and shown promising applications in many fields such as biomedical, textile, aerospace and so on. The currently developed shape memory polymers are mainly thermo-responsive, in which vitrification or crystallization of the polymer chains are applied as temporary crosslinks to achieve shape memory property, and the shape recovery is induced by heat. In order to realize shape memory performance under mild conditions, supramolecular interactions (hydrogen bonds, host-guest recognition, metal-ligand coordination) and dynamic covalent bonds (boronate ester interactions, Schiff base bonds) have been employed as temporary switches to construct supramolecular shape memory hydrogels (SSMHs). Because of the reversible and dynamic nature of molecular switches, SSMHs could display excellent shape memory behavior at room temperature. In the early stage, only one kind of reversible interaction was utilized to fix one temporary shape in each shape memory cycle, resulting in a dual shape memory effect. Since the number of temporary shapes that could be stabilized normally has a great impact on the potential applications, two or more non-interfering dynamic switches have been incorporated in one system to realize triple or multiple shape memory effect. Moreover, other properties such as self-healing, adhesion, shape deformation and fluorescence have been successfully introduced into SSMHs, a series of multi-functional SSMHs have been developed to broaden their potential applications. In this review, the definition and development of SSMHs are briefly introduced, and recent progress in SSMHs with different kinds of reversible interactions is summarized, followed by the presentation of SSMHs with multiple shape memory effect and multi-functions. Finally, current challenges and future perspectives in this field are also discussed to promote new developing directions.
  • 加载中
    1. [1]

      Zhao Q, Qi H J, Xie T. Prog Polym Sci, 2015, 49-50: 79 − 120  doi: 10.1016/j.progpolymsci.2015.04.001

    2. [2]

      Zhao Q, Zou W K, Luo Y W, Xie T. Sci Adv, 2016, 2: e1501297

    3. [3]

      Hager M D, Bode S, Weber C, Schubert U S. Prog Polym Sci, 2015, 49-50: 3 − 33  doi: 10.1016/j.progpolymsci.2015.04.002

    4. [4]

      Zheng N, Fang Z Z, Zou W K, Zhao Q, Xie T. Angew Chem Int Ed, 2016, 55: 11421 − 11425  doi: 10.1002/anie.201602847

    5. [5]

      Xie T. Nature, 2010, 464: 267 − 270  doi: 10.1038/nature08863

    6. [6]

      Berg G J, McBride M K, Wang C, Bowman C N. Polymer, 2014, 55: 5849 − 5872  doi: 10.1016/j.polymer.2014.07.052

    7. [7]

      Sun L, Huang W M, Ding Z, Zhao Y, Wang C C, Purnawali H, Tang C. Mater Des, 2012, 33: 577 − 640

    8. [8]

      Meng H, Li G Q. Polymer, 2013, 54: 2199 − 2221  doi: 10.1016/j.polymer.2013.02.023

    9. [9]

      Liu C, Qin H, Mather P T. J Mater Chem, 2007, 17: 1543 − 1558  doi: 10.1039/b615954k

    10. [10]

      Leng J S, Lan X, Liu Y J, Du S Y. Prog Mater Sci, 2011, 56: 1077 − 1135  doi: 10.1016/j.pmatsci.2011.03.001

    11. [11]

      Nochel U, Behl M, Balk M, Ledlein A. ACS Appl Mater Interfaces, 2016, 8: 28068 − 28076  doi: 10.1021/acsami.6b09581

    12. [12]

      Habault D, Zhang H, Zhao Y. Chem Soc Rev, 2013, 42: 7244 − 7256  doi: 10.1039/c3cs35489j

    13. [13]

      Lu W, Le X X, Zhang J W, Huang Y J, Chen T. Chem Soc Rev, 2017, 46: 1284 − 1294  doi: 10.1039/C6CS00754F

    14. [14]

      Liu K, Kang Y T, Wang Z Q, Zhang X. Adv Mater, 2013, 25: 5530 − 5548  doi: 10.1002/adma201302015

    15. [15]

      Yan X Z, Wang F, Zheng B, Huang F H. Chem Soc Rev, 2012, 41: 6042 − 6065  doi: 10.1039/c2cs35091b

    16. [16]

      Jiang Z C, Xiao Y Y, Kang Y, Pan M, Li B J, Zhang S. ACS Appl Mater Interfaces, 2017, 9: 20276 − 20293  doi: 10.1021/acsami.7b03624

    17. [17]

      Chan B Q Y, Low Z W K, Heng S J W, Chan S Y, Owh C, Loh X J. ACS Appl Mater Interfaces, 2016, 8: 10070 − 10087  doi: 10.1021/acsami.6b01295

    18. [18]

      Zhang G G, Zhao Q, Zou W K, Luo Y W, Xie T. Adv Funct Mater, 2016, 26: 931 − 937  doi: 10.1002/adfm.v26.6

    19. [19]

      Yang L P, Zhang G G, Zheng Ning, Zhao Q, Xie T. Angew Chem Int Ed, 2017, 129: 12773 − 12776  doi: 10.1002/ange.201706949

    20. [20]

      Hu X B, Zhou J, Mohammad V V, William F M D, Li Q X, Aleksandr P Z, Sheiko S S. Nat Commun, 2016, 7: 12919 − 12926  doi: 10.1038/ncomms12919

    21. [21]

      Chen Y N, Peng L F, Liu T Q, Wang Y X, Shi S J, Wang H L. ACS Appl Mater Interfaces, 2016, 8: 27199 − 27206  doi: 10.1021/acsami.6b08374

    22. [22]

      Xu B, Zhang Y Y, Liu W G. Macromol Rapid Commun, 2015, 36: 1585 − 1591  doi: 10.1002/marc.v36.17

    23. [23]

      Guo W W, Lu C H, Orbach R, Wang F A, Qi X J, Cecconello A, Seliktar D, Willner I. Adv Mater, 2015, 27: 73 − 78  doi: 10.1002/adma.v27.1

    24. [24]

      Hu Y W, Lu C H, Guo W W, Aleman M A, Ren J T, Willner I. Adv Funct Mater, 2015, 25: 6867 − 6874  doi: 10.1002/adfm.201503134

    25. [25]

      Hu Y W, Guo W W, Kahn J S, Aleman M A, Willner I. Angew Chem Int Ed, 2016, 55: 4210 − 4214  doi: 10.1002/anie.201511201

    26. [26]

      Han X J, Dong Z Q, Fan M M, Liu Y, Li H J, Wang Y F, Yuan Q J, Li B J, Zhang S. Macromol Rapid Commun, 2012, 33: 1055 − 1060  doi: 10.1002/marc.201200153

    27. [27]

      Feng W, Zhou W F, Dai Z H, Yasin A, Yang H Y. J Mater Chem B, 2016, 4: 1924 − 1931  doi: 10.1039/C5TB02737C

    28. [28]

      Dong Z Q, Cao Y, Yuan Q J, Wang Y F, Li J H, Li B J, Zhang S. Macromol Rapid Commun, 2013, 34: 867 − 872  doi: 10.1002/marc.201300084

    29. [29]

      Miyamae K, Nakahata M, Takashima Y, Harada A. Angew Chem Int Ed, 2015, 54: 8984 − 8987  doi: 10.1002/anie.201502957

    30. [30]

      Lewis C L, Dell E M. J Polym Sci Part B: Polym Phys, 2016, 54: 1340 − 1364  doi: 10.1002/polb.v54.14

    31. [31]

      Nan W J, Wang W, Gao H, Liu W G. Soft Matter, 2013, 9: 132 − 137  doi: 10.1039/C2SM26918J

    32. [32]

      Harris R D, Auletta J T, Motlagh S A M, Lawless M J, Perri N M, Saxena S, Weiland L M, Waldeck D H, Clark W W, Meyer T Y. ACS Macro Lett, 2013, 2: 1095 − 1099  doi: 10.1021/mz4004997

    33. [33]

      Ren Z Q, Zhang Y Y, Li Y M, Xu B, Liu W G. J Mater Chem B, 2015, 3: 6347 − 6354  doi: 10.1039/C5TB00781J

    34. [34]

      Feng W, Zhou W F, Zhang S D, Fan Y J, Yasin A, Yang H Y. RSC Adv, 2015, 5: 81784 − 81789  doi: 10.1039/C5RA14421C

    35. [35]

      Meng H, Xiao P, Gu J C, Wen X F, Xu J, Zhao C Z, Zhang J W, Chen T. Chem Commun, 2014, 50: 12277 − 12280  doi: 10.1039/C4CC04760E

    36. [36]

      Zhao Z G, Zhang K J, Liu Y X, Zhou J J, Liu M J. Adv Mater, 2017, 29: 1701695  doi: 10.1002/adma.v29.33

    37. [37]

      Zhao Z G, Liu Y X, Zhang K J, Zhuo S Y, Fang R C, Zhang J Q, Jiang L, Liu M J. Angew Chem Int Ed, 2017, 56: 13464 − 13469  doi: 10.1002/anie.201707239

    38. [38]

      Matsuda A, Osada Y. Nature, 1995, 376: 219

    39. [39]

      Xiao H, Ma C X, Le X X, Wang L, Lu W, Theato P, Hu T P, Zhang J W, Chen T. Polymers, 2017, 9: 138 − 148  doi: 10.3390/polym9040138

    40. [40]

      Han Y J, Bai T, Liu Y, Zhai X Y, Liu W G. Macromol Rapid Commun, 2012, 33: 225 − 231  doi: 10.1002/marc.201100683

    41. [41]

      Fan Y J, Zhou W F, Yasin A, Li H Z, Yang H Y. Soft Matter, 2015, 11: 4218 − 4225  doi: 10.1039/C5SM00168D

    42. [42]

      Meng H, Zheng J, Wen X F, Cai Z Q, Zhang J W, Chen T. Macromol Rapid Commun, 2015, 36: 533  doi: 10.1002/marc.v36.6

    43. [43]

      Zhang Y C, Lu W, Jian Y K, Le X X, Patrick T, Zhang J W, Chen T. Macromol Mater Eng, 2018, 303: 1800144  doi: 10.1002/mame.v303.7

    44. [44]

      Li Z W, Lu W, Ngai T, Le X X, Zheng J, Zhao N, Huang Y J, Wen X F, Zhang J W, Chen T. Polym Chem, 2016, 7: 5343 − 5346  doi: 10.1039/C6PY01112H

    45. [45]

      Xiao H, Lu W, Le X X, Ma C X, Li Z W, Zheng J, Zhang J W, Huang Y J, Chen T. Chem Commun, 2016, 52: 13292 − 13295

    46. [46]

      Xiao Y Y, Gong X L, Kang Y, Jiang Z C, Zhang S, Li B J. Chem Commun, 2016, 52: 10609 − 10612  doi: 10.1039/C6CC03587F

    47. [47]

      Le X X, Lu W, Zheng J, Tong D Y, Zhao N, Ma C X, Xiao H, Zhang J W, Huang Y J, Chen T. Chem Sci, 2016, 7: 6715 − 6720  doi: 10.1039/C6SC02354A

    48. [48]

      Le X X, Lu W, Xiao H, Wang L, Ma C X, Zhang J W, Huang Y J, Chen T. ACS Appl Mater Interfaces, 2017, 9: 9038 − 9044  doi: 10.1021/acsami.7b00169

    49. [49]

      Wang L, Jian Y K, Le X X, Lu W, Ma C X, Zhang J W, Huang Y J, Huang C F, Chen T. Chem Commun, 2018, 54: 1229 − 1232  doi: 10.1039/C7CC09456F

    50. [50]

      Le X X, Zhang Y C, Lu W, Wang L, Zheng J, Israt A, Zhang J W, Huang Y J, Serpe. M J, Yang X T, Fan X D, Chen T Macromol Rapid Commun, 2018, 39: 1800019  doi: 10.1002/marc.v39.9

    51. [51]

      Jian Y K, Le X X, Zhang Y C, Lu W, Wang L, Zheng J, Zhang J W, Huang Y J, Chen T. Macromol Rapid Commun, 2018, 39: 1800130  doi: 10.1002/marc.v39.12

    52. [52]

      Lu W, Ma C X, Zhang D, Le X X, Zhang J W, Huang Y J, Huang C F, Chen T. J Phys Chem C, 2018, 122: 9499 − 9506  doi: 10.1021/acs.jpcc.8b01689

    53. [53]

      Wei Z, Yang J H, Zhou J X, Xu F, Zrinyi M, Dussault P H, Osada Y, Chen Y M. Chem Soc Rev, 2014, 43: 8114 − 8131

    54. [54]

      Lee K Y, Mooney D J. Prog Polym Sci, 2012, 37: 106 − 126  doi: 10.1016/j.progpolymsci.2011.06.003

  • 加载中
    1. [1]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    2. [2]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    3. [3]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    4. [4]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    5. [5]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    6. [6]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    7. [7]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    8. [8]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    9. [9]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    10. [10]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    11. [11]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    12. [12]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    13. [13]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    14. [14]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    15. [15]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    16. [16]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    17. [17]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    18. [18]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    19. [19]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(0)
  • Abstract views(113)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return