Citation: Zhong-bao Jian. Synthesis of Functionalized Polyolefins: Design from Catalysts to Polar Monomers[J]. Acta Polymerica Sinica, ;2018, 0(11): 1359-1371. doi: 10.11777/j.issn1000-3304.2018.18146 shu

Synthesis of Functionalized Polyolefins: Design from Catalysts to Polar Monomers

  • Corresponding author: Zhong-bao Jian, zbjian@ciac.ac.cn
  • Received Date: 26 June 2018
    Available Online: 6 September 2018

  • Coordination-insertion copolymerization of olefins and polar monomers for the preparation of functionalized polyolefins is one of the most important project in the field of olefin polymerization in the past twenty years. Due to the incorporation of functional groups, functionalized polyolefins, as the high value-added polymer materials, are of better surface properties and compatibility than those without any functionality, thus leading to expanding the range of applications. However, the presence of functional groups can also accelerate the chain transfer and chelate to the active central metal in the copolymerization of olefin and polar monomers, therefore this type of copolymerization suffers from lower catalytic activity and lower polymer molecular weight than the corresponding homo-polymerization of the olefins. As a result, the key for the high performance synthesis of functionalized polyolefins is to overcome the problem related to the functional groups of the polar monomers. In this Feature Article, recent research progress on the copolymerization of olefins and polar monomers to achieve the functionalized polyolefins by using late transition metal catalysts will be mostly summarized. Firstly, the milestone catalysts for the synthesis of functionalized polyolefins are introduced, and the latest research progresses on how to overcome the problem of polar monomer by designing nickel and palladium catalysts are highlighted. Then a series of our findings in recent years on the design of the polar monomers for the synthesis of functionalized polyolefins are revealed in detail, including the concept of polar di-vinyl monomers to overcome the problems related to polar monomers (rapid chain transfer reaction and chelation of functional group to active central metal) and the strategy of vinyl furan monomer with secondary coordination effect to synthesize novel functionalized polyolefins (telechelic polyolefin with two reactive endgroups). Finally, future development and long-standing challenges in the community of functionalized polyolefins by the copolymerization of olefins and polar monomers are out looked.
  • 加载中
    1. [1]

      Dong J Y, Hu Y L. Coord Chem Rev, 2006, 250(1-2): 47 − 65

    2. [2]

      Boaen N K, Hillmyer M A. Chem Soc Rev, 2005, 34(3): 267 − 275

    3. [3]

      Franssen N M G, Reek J N H, de Bruin B. Chem Soc Rev, 2013, 42(13): 5809 − 5832

    4. [4]

      Boffa L S, Novak B M. Chem Rev, 2000, 100(4): 1479 − 1494

    5. [5]

      Chen E Y X. Chem Rev, 2009, 109(11): 5157 − 5214

    6. [6]

      Nakamura A, Ito S, Nozaki K. Chem Rev, 2009, 109(11): 5215 − 5244

    7. [7]

      Nakamura A, Anselment T M J, Claverie J, Goodall B, Jordan R F, Mecking S, Rieger B, Sen A, van Leeuwen P W N M, Nozaki K. Acc Chem Res, 2013, 46(7): 1438 − 1449

    8. [8]

      Terao H, Ishii S, Mitani M, Tanaka H, Fujita T. J Am Chem Soc, 2008, 130(52): 17636 − 17637

    9. [9]

      Yang X, Liu C, Wang C, Sun X, Guo Y, Wang X, Wang Z, Xie Z, Tang Y. Angew Chem Int Ed, 2009, 48(43): 8099 − 8102

    10. [10]

      Chen Z, Li J, Tao W, Sun X, Yang X, Tang Y. Macromolecules, 2013, 46(7): 2870 − 2875

    11. [11]

      Wang X Y, Wang Y, Shi X C, Liu J Y, Chen C L, Li Y S. Macromolecules, 2014, 47(2): 552 − 559

    12. [12]

      Liu D T, Yao C G, Wang R, Wang M Y, Wang Z C, Wu C J, Lin F, Li S H, Wan X H, Cui D M. Angew Chem Int Ed, 2015, 54(17): 5205 − 5209

    13. [13]

      Liu D T, Wang M Y, Wang Z C, Wu C J, Pan Y P, Cui D M. Angew Chem Int Ed, 2017, 56(10): 2714 − 2719

    14. [14]

      Wang C X, Luo G, Nishiura M, Song G Y, Yamamoto A, Luo Y, Hou Z M. Sci Adv, 2017, 3(7): e1701011

    15. [15]

    16. [16]

      Chen J, Gao Y, Wang B, Lohr T L, Marks T J. Angew Chem Int Ed, 2017, 56(50): 15964 − 15968

    17. [17]

      Keim W, Kowaldt F H, Goddard R, Krüger C. Angew Chem Int Ed Engl, 1978, 17(6): 466 − 467

    18. [18]

      Johnson, L K, Mecking S, Brookhart M. J Am Chem Soc, 1996, 118(1): 267 − 268

    19. [19]

      Drent E, van Dijk R, van Ginkel R, van Oort B, Pugh R I. Chem Commun, 2002: 744 − 745

    20. [20]

      Camacho D H, Salo E V, Ziller J W, Guan Z. Angew Chem Int Ed, 2004, 43(14): 1821 − 1825

    21. [21]

      Popeney C S, Camacho D H, Guan Z. J Am Chem Soc, 2007, 129(33): 10062 − 10063

    22. [22]

      Vaidya T, Klimovica K, LaPointe A M, Keresztes I, Lobkovsky E B, Daugulis O, Coates G W. J Am Chem Soc, 2014, 136(20): 7213 − 7216

    23. [23]

      Allen K E, Campos J, Daugulis O, Brookhart M. ACS Catal, 2015, 5(1): 456 − 464

    24. [24]

      Rhinehart J L, Brown L A, Long B K. J Am Chem Soc, 2013, 135(44): 16316 − 16319

    25. [25]

      Dai S Y, Sui X L, Chen C L. Angew Chem Int Ed, 2015, 54(34): 9948 − 9953

    26. [26]

      Dai S Y, Chen C L. Angew Chem Int Ed, 2016, 55(42): 13281 − 13285

    27. [27]

      Long B K, Eagan J M, Mulzer M, Coates G W. Angew Chem Int Ed, 2016, 55(25): 7106 − 7110

    28. [28]

      Zhong L, Li G, Liang G, Gao H, Wu Q. Macromolecules, 2017, 50(7): 2675 − 2682

    29. [29]

      Zhong S, Tan Y, Zhong L, Gao J, Liao H, Jiang L, Gao H, Wu Q. Macromolecules, 2017, 50(15): 5661 − 5669

    30. [30]

      Guo L, Gao H, Guan Q, Hu H, Deng J, Liu J, Liu F, Wu Q. Organometallics, 2012, 31(17): 6054 − 6062

    31. [31]

      Skupov K M, Marella P R, Simard M, Yap G P A, Allen N, Conner D, Goodall B L, Claverie J P. Macromol Rapid Commun, 2007, 28(20): 2033 − 2038

    32. [32]

      Guironnet D, Roesle P, Rünzi T, Göttker-Schnetmann I, Mecking S. J Am Chem Soc, 2009, 131(2): 422 − 423

    33. [33]

      Neuwald B, Caporaso L, Cavallo L, Mecking S. J Am Chem Soc, 2013, 135(3): 1026 − 1036

    34. [34]

      Wucher P, Goldbach V, Mecking S. Organometallics, 2013, 32(16): 4516 − 4522

    35. [35]

      Ota Y, Ito S, Kuroda J, Okumura Y, Nozaki K. J Am Chem Soc, 2014, 136(34): 11898 − 11901

    36. [36]

      Chen M, Chen C L. ACS Catal, 2017, 7(2): 1308 − 1312

    37. [37]

      Carrow B P, Nozaki K. J Am Chem Soc, 2012, 134(21): 8802 − 8805

    38. [38]

      Xin B S, Sato N, Tanna A, Oishi Y, Konishi Y, Shimizu F. J Am Chem Soc, 2017, 139(10): 3611 − 3614

    39. [39]

      Chen M, Chen C L. Angew Chem Int Ed, 2018, 57(12): 3094 − 3098

    40. [40]

      Mitsushige Y, Yasuda H, Carrow B P, Ito S, Kobayashi M, Tayano T, Watanabe Y, Okuno Y, Hayashi S, Kuroda J, Okumura Y, Nozaki K. ACS Macro Lett, 2018, 7(3): 305 − 311

    41. [41]

      Zhang Y P, Mu H L, Pan L, Wang X L, Li Y S. ACS Catal, 2018, 8: 5963 − 5976

    42. [42]

      Yasuda H, Nakano R, Ito S, Nozaki K. J Am Chem Soc, 2018, 140(10): 1876 − 1883

    43. [43]

      Chen Z, Liu W, Daugulis O, Brookhart M. J Am Chem Soc, 2016, 138(49): 16120 − 16129

    44. [44]

      Chen Z, Leatherman M D, Daugulis O, Brookhart M. J Am Chem Soc, 2017, 139(44): 16013 − 16022

    45. [45]

      Radlauer M R, Buckley A K, Henling L M, Agapie T. J Am Chem Soc, 2013, 135(10): 3784 − 3787

    46. [46]

      Takeuchi D, Chiba Y, Takano S, Osakada K. Angew Chem Int Ed, 2013, 52(48): 12536 − 12540

    47. [47]

      Takano S, Takeuchi D, Osakada K, Akamatsu N, Shishido A. Angew Chem Int Ed, 2014, 53(35): 9246 − 9250

    48. [48]

      Li M, Wang X B, Luo Y, Chen C L. Angew Chem Int Ed, 2017, 56(38): 11604 − 11609

    49. [49]

      Zhang D, Chen C L. Angew Chem Int Ed, 2017, 56(46): 14672 − 14676

    50. [50]

      Chen M, Yang B P, Chen C L. Angew Chem Int Ed, 2015, 54(51): 15520 − 15524

    51. [51]

      Mu H L, Pan L, Song D P, Li Y S. Chem Rev, 2015, 115(22): 12091 − 12137

    52. [52]

      Guo L H, Liu W J, Chen C L. Mater Chem Front, 2017, 1(12): 2487 − 2494

    53. [53]

      Chen C L. Nat Rev Chem, 2018, 2(5): 6 − 14

    54. [54]

      Chen C L. ACS Catal, 2018, 8(6): 5506 − 5514

    55. [55]

      Daigle J C, Piche L, Arnold A, Claverie J P. ACS Macro Lett, 2012, 1(3): 343 − 346

    56. [56]

      Rünzi T, Guironnet D, Göttker-Schnetmann I, Mecking S. J Am Chem Soc, 2010, 132(46): 16623 − 16630

    57. [57]

      Jian Z, Baier M C, Mecking S. J Am Chem Soc, 2015, 137(8): 2836 − 2839

    58. [58]

      Jian Z, Mecking S. Angew Chem Int Ed, 2015, 54(52): 15845 − 15849

    59. [59]

      Wimmer F P, Caporaso L, Cavallo L, Mecking S, Falivene L. Macromolecules, 2018, 51(12): 4525 − 4531

    60. [60]

      Luo S, Vela J, Lief G R, Jordan R F. J Am Chem Soc, 2007, 129(29): 8946 − 8947

    61. [61]

      Chen C L, Luo S, Jordan R F. J Am Chem Soc, 2010, 132(14): 5273 − 5284

    62. [62]

      Jian Z, Mecking S. Macromolecules, 2016, 49(42): 4395 − 4403

    63. [63]

      Jian Z, Falivene L, Boffa G, Ortega Sánchez S, Caporaso L, Grassi A, Mecking S. Angew Chem Int Ed, 2016, 55(46): 14378 − 14383

    64. [64]

      Dai S Y, Zhou S X, Zhang W, Chen C L. Macromolecules, 2016, 49(23): 8855 − 8862

    65. [65]

      Na Y N, Dai S Y, Chen C L. Macromolecules, 2018, 51(12): 4040 − 4048

  • 加载中
    1. [1]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    9. [9]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    14. [14]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    15. [15]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    16. [16]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    17. [17]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    18. [18]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(0)
  • Abstract views(134)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return