Citation: Huan Ge, Fa-jun Zhang, Hai-ying Huang, Tian-bai He. Studies on the Crystallization Orientation in Micromolded PCL-b-PLLA Thin Films[J]. Acta Polymerica Sinica, ;2019, 50(1): 82-90. doi: 10.11777/j.issn1000-3304.2018.18137 shu

Studies on the Crystallization Orientation in Micromolded PCL-b-PLLA Thin Films

  • Corresponding author: Hai-ying Huang, hyhuang@ciac.ac.cn Tian-bai He, tbhe@ciac.ac.cn
  • Received Date: 5 June 2018
    Revised Date: 23 July 2018
    Available Online: 28 August 2018

  • In this work, we have studied the crystallization orientation behavior of poly(ɛ-caprolactone)-b-poly(l-lactide) (PCL-b-PLLA) under physically confined environment provided via a soft nanoimprinting lithography (NIL) process. The confined thin films were annealed and crystallized following two different routes, and the resulting morphology and crystal orientation were systematically investigated by atomic force microscopy (AFM) and grazing-incidence X-ray diffraction (GIXRD). Based on the large difference of the crystallization temperatures of PCL and PLLA, both one-step (TTc,PCL) and two-step crystallization (TTc,PLLATc,PCL) processes were used. It was found that PCL crystals were successfully confined in the micromolded domains after one-step crystallization. Interestingly, the fast growth direction of PCL crystals (b-axis) was either along the normal or the parallel direction of the trench, depending on the flow mechanisms during the nanoimprinting process. In the melt nanoimprinting process, polymer melt was squeezed into the trench and forced into the normal direction by the shearing effect and the expanding of the soft mold. By contrast, in room temperature (RT) imprinting process, upon annealing, polymer melt went into the trench by the capillary force and the flow direction of polymer melt was inclined to along the trench. For two-step crystallization process, both PLLA and PCL crystal were confined in the trench. However, due to the high crystallization temperature of PLLA, in the first step of PLLA crystallization, no preferential growth orientation was observed. These results indicated that, without imprinting induced shear flow (which relaxed quickly at PLLA crystallization temperature), the physical confinement of the soft mold was not strong enough to guide the crystal growth direction. Subsequent second step of PCL crystallization was enhanced by the existing PLLA crystal, resulting randomly distributed crystal orientation.
  • 加载中
    1. [1]

      He W N, Xu J T. Prog Polym Sci, 2012, 37(10): 1350 − 1400

    2. [2]

      Michell R M, Müeller A J. Prog Polym Sci, 2016, 54-55: 183 − 213  doi: 10.1016/j.progpolymsci.2015.10.007

    3. [3]

      Nakagawa S, Marubayashi H, Nojima S. Eur Polym J, 2015, 70: 262 − 275  doi: 10.1016/j.eurpolymj.2015.07.018

    4. [4]

      Prud'homme R E. Prog Polym Sci, 2016, 54-55: 214 − 231  doi: 10.1016/j.progpolymsci.2015.11.001

    5. [5]

      Su Y L, Liu G M, Xie B Q, Fu D S, Wang D J. Acc Chem Res, 2014, 47(1): 192 − 201  doi: 10.1021/ar400116c

    6. [6]

      Wen T, Wang H F, Li M C, Ho R M. Acc Chem Res, 2017, 50(4): 1011 − 1021  doi: 10.1021/acs.accounts.7b00025

    7. [7]

      Loo Y L, Register R A, Ryan A J, Dee G T. Macromolecules, 2001, 34(26): 8968 − 8977  doi: 10.1021/ma011521p

    8. [8]

      Wu H, Wang W, Yang H X, Su Z H. Macromolecules, 2007, 40(12): 4244 − 4249  doi: 10.1021/ma070564o

    9. [9]

      Guan Y, Liu G, Ding G, Yang T, Mueller A J, Wang D. Macromolecules, 2015, 48(8): 2526 − 2533  doi: 10.1021/acs.macromol.5b00108

    10. [10]

      Wang H P, Keum J K, Hiltner A, Baer E. Macromolecules, 2010, 43(7): 3359 − 3364  doi: 10.1021/ma902780p

    11. [11]

      Wang H P, Keum J K, Hiltner A, Baer E, Freeman B, Rozanski A, Galeski A. Science, 2009, 323(5915): 757 − 760  doi: 10.1126/science.1164601

    12. [12]

      Zhang F J, Huang H Y, Hu Z J, Chen Y Z, He T B. Langmuir, 2003, 19(24): 10100 − 10108  doi: 10.1021/la035290m

    13. [13]

      Loo Y L, Register R A, Ryan A J. Phys Rev Lett, 2000, 84(18): 4120 − 4123  doi: 10.1103/PhysRevLett.84.4120

    14. [14]

      Lin M C, Chen H L, Su W B, Su C J, Jeng U S, Tzeng F Y, Wu J Y, Tsai J C, Hashimoto T. Macromolecules, 2012, 45(12): 5114 − 5127  doi: 10.1021/ma300711k

    15. [15]

      Wen T, Ho R M. ACS Macro Lett, 2017, 6(4): 370 − 374  doi: 10.1021/acsmacrolett.7b00138

    16. [16]

      Liang G D, Xu J T, Fan Z Q, Mai S M, Ryan A J. Macromolecules, 2006, 39(16): 5471 − 5478  doi: 10.1021/ma060405p

    17. [17]

      Zhang P, Huang H Y, Yan D R, He T B. Langmuir, 2012, 28(15): 6419 − 6427  doi: 10.1021/la300439h

    18. [18]

      Yang J, Liang Y R, Luo J, Zhao C Z, Han C C. Macromolecules, 2012, 45(10): 4254 − 4261  doi: 10.1021/ma202505f

    19. [19]

      Nakagawa S, Tanaka T, Ishizone T, Nojima S, Kamimura K, Yamaguchi K, Nakahama S. Polymer, 2014, 55(16): 4394 − 4400  doi: 10.1016/j.polymer.2014.06.049

    20. [20]

      Nakagawa S, Ishizone T, Nojima S, Kamimura K, Yamaguchi K, Nakahama S. Macromolecules, 2015, 48(19): 7138 − 7145  doi: 10.1021/acs.macromol.5b01744

    21. [21]

      Ho R M, Hsieh P Y, Tseng W H, Lin C C, Huang B H, Lotz B. Macromolecules, 2003, 36(24): 9085 − 9092  doi: 10.1021/ma0347868

    22. [22]

      Sun Y S, Chung T M, Li Y J, Ho R M, Ko B T, Jeng U S. Macromolecules, 2007, 40(18): 6778 − 6781  doi: 10.1021/ma0709708

    23. [23]

      Nakagawa S, Kadena K I, Ishizone T, Nojima S, Shimizu T, Yamaguchi K, Nakahama S. Macromolecules, 2012, 45(4): 1892 − 1900  doi: 10.1021/ma202566f

    24. [24]

      Guo L J. Adv Mater, 2007, 19(4): 495 − 513  doi: 10.1002/(ISSN)1521-4095

    25. [25]

      Hu Z J, Baralia G, Bayot V, Gohy J F, Jonas A M. Nano Lett, 2005, 5(9): 1738 − 1743  doi: 10.1021/nl051097w

    26. [26]

      Hu Z, Jonas A M. Soft Matter, 2010, 6(1): 21 − 28  doi: 10.1039/B918168G

    27. [27]

      Hu Z J, Muls B, Gence L, Serban D A, Hofkens J, Melinte S, Nysten B, Demoustier-Champagne S, Jonas A M. Nano Lett, 2007, 7(12): 3639 − 3644  doi: 10.1021/nl071869j

    28. [28]

      Hu Z J, Tian M W, Nysten B, Jonas A M. Nat Mater, 2009, 8(1): 62 − 67  doi: 10.1038/nmat2339

    29. [29]

      Aryal M, Trivedi K, Hu W C. ACS Nano, 2009, 3(10): 3085 − 3090  doi: 10.1021/nn900831m

    30. [30]

      Ding G Z, Wu Y J, Weng Y Y, Zhang W D, Hu Z J. Macromolecules, 2013, 46(21): 8638 − 8643  doi: 10.1021/ma401700d

    31. [31]

      Zhang P, Huang H Y, He T B, Hu Z J. ACS Macro Lett, 2012, 1(8): 1007 − 1011  doi: 10.1021/mz3002758

    32. [32]

      Zhang P, Huang H Y, Chen Y, Yu S, Krywka C, Vayalil S K, Roth S V, He T B. Chinese J Polym Sci, 2014, 32(9): 1188 − 1198  doi: 10.1007/s10118-014-1506-x

    33. [33]

      Ho R M, Chiang Y W, Lin C C, Huang B H. Macromolecules, 2005, 38(11): 4769 − 4779

    34. [34]

      Peponi L, Navarro-Baena I, Baez J E, Kenny J M, Marcos-Fernandez A. Polymer, 2012, 53(21): 4561 − 4568  doi: 10.1016/j.polymer.2012.07.066

    35. [35]

      Hamley I W, Parras P, Castelletto V, Castillo R V, Müller A J, Pollet E, Dubois P, Martin C M. Macromol Chem Phys, 2006, 207(11): 941 − 953  doi: 10.1002/(ISSN)1521-3935

    36. [36]

      Kim J K, Park D J, Lee M S, Ihn K J. Polymer, 2001, 42(17): 7429 − 7441  doi: 10.1016/S0032-3861(01)00217-8

    37. [37]

      Yan D R, Huang H Y, He T B, Zhang F J. Langmuir, 2011, 27(19): 11973 − 11980  doi: 10.1021/la202379b

    38. [38]

    39. [39]

      Laredo E, Prutsky N, Bello A, Grimau M, Castillo R V, Müller A J, Dubois P. Eur Phys J E, 2007, 23(3): 295 − 303  doi: 10.1140/epje/i2007-10191-6

    40. [40]

      Hamley I W, Castelletto V, Castillo R V, Müller A J, Martin C M, Pollet E, Dubois P. Macromolecules, 2005, 38(2): 463 − 472  doi: 10.1021/ma0481499

    41. [41]

      Chatani Y, Okita Y, Tadokoro H, Yamashit Y. Polym J, 1970, 5(1): 555 − 562

    42. [42]

      Heyderman L J, Schift H, David C, Gobrecht J, Schweizer T. Microelectron Eng, 2000, 54(3): 229 − 245

    43. [43]

      Thébault P, Niedermayer S, Landis S, Chaix N, Guenoun P, Daillant J, Man X K, Andelman D, Orland H. Adv Mater, 2012, 24(15): 1952 − 1955  doi: 10.1002/adma.201103532

    44. [44]

      Chiang Y W, Ho R M, Thomas E L, Burger C, Hsiao B S. Adv Func Mater, 2009, 19(3): 448 − 459  doi: 10.1002/adfm.v19:3

    45. [45]

      Palacios J K, Zhao J, Hadjichristidis N, Müller A J. Macromolecules, 2017, 50(24): 9683 − 9695  doi: 10.1021/acs.macromol.7b02148

  • 加载中
    1. [1]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    2. [2]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    3. [3]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    6. [6]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    7. [7]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    8. [8]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    9. [9]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    10. [10]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    11. [11]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    15. [15]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    16. [16]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    17. [17]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    18. [18]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    19. [19]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(0)
  • Abstract views(156)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return