Citation: Jia Liu, Xiao-ning Ma, Mei-dong Lang. Synthesis and Characterization of Dynamic Covalent Polymers Based on Ditelluride Bonds[J]. Acta Polymerica Sinica, ;2018, 0(12): 1514-1523. doi: 10.11777/j.issn1000-3304.2018.18133 shu

Synthesis and Characterization of Dynamic Covalent Polymers Based on Ditelluride Bonds

  • Corresponding author: Mei-dong Lang, mdlang@ecust.edu.cn
  • Received Date: 29 May 2018
    Revised Date: 15 June 2018
    Available Online: 19 July 2018

  • Dynamic covalent polymers that inherit the reversibility and robustness of dynamic covalent bonds have attracted considerable attention in terms of self-healing, stimuli-responsiveness, and recyclability. However, most of them require an external stimulus to induce their dynamic properties, which may limit their application. Here, two dynamic covalent polymers based on ditelluride bonds were prepared, which were free of external conditions. First, a novel stable ditelluride-containing compound, di-(1-hydroxypropyl) ditelluride ((HOC3H6Te)2) was synthesized. Then, two ditelluride-containing polymers, polycaprolactone (PCLTe)2 and poly(1,3-trimethylene carbonate) (PTMCTe)2 were synthesized via the enzymatic ring-opening polymerization using (HOC3H6Te)2 as the initiator and Novozym 435 as the catalyst. The structures of (PCLTe)2 and (PTMCTe)2 were verified by 1H-NMR and 125Te-NMR. The dynamic properties of the ditelluride-containing polymers were investigated using (PCLTe)2 and (PTMCTe)2 as the model polymers and confirmed by 1H-NMR, 13C-NMR and 125Te-NMR spectra. The results indicated that the ditelluride exchange between (PCLTe)2 and diphenyl ditelluride ((PhTe)2) could occur spontaneously in the dark at room temperature without any external stimuli and the equilibrium of the reaction could be reached immediately. The dynamic exchange between (PCLTe)2 and (PTMCTe)2 was confirmed by 125Te-NMR spectrum and MALDI-TOF mass, which could occur spontaneously without any external stimuli. The results of MALDI-TOF mass showed that a di-block polymer (PTMCTeTePCL) was formed during the exchange process. The tensile test results indicated that the tensile strength and the elongation of PCL/PTMC composite were 3.07 MPa and 38.26%, respectively. However, as for (PCLTe)2/(PTMCTe)2 composite, the tensile strength and the elongation were increased to 5.22 MPa and 80.51%, respectively. The scanning electron microscopy images showed that the compatibility between (PCLTe)2 and (PTMCTe)2 was significantly improved comparing with the PCL/PTMC composite. The results indicated that the ditelluride exchange had a great effect on the properties of (PCLTe)2/(PTMCTe)2 composite. This study developed the ditelluride-related dynamic chemistry and promoted the application of dynamic covalent polymers.
  • 加载中
    1. [1]

      Maeda T, Otsuka H, Takahara A. Prog Polym Sci, 2009, 34: 581 − 604

    2. [2]

      Garcia F, Smulders M M. J Polym Sci, Part A: Polym Chem, 2016, 54: 3551 − 3577

    3. [3]

      Roy N, Bruchmann B, Lehn J M. Chem Soc Rev, 2015, 44: 3786 − 3807

    4. [4]

      Jin Y, Yu C, Denman R J, Zhang W. Chem Soc Rev, 2013, 42: 6634 − 6654

    5. [5]

      Rowan S J, Cantrill S J, Cousins G R, Sanders J K, Stoddart J F. Angew Chem Int Ed, 2002, 41: 898 − 952

    6. [6]

    7. [7]

      Feng L, Yu Z, Bian Y, Lu J, Shi X, Chai C. Polymer, 2017, 124: 48 − 59

    8. [8]

    9. [9]

      Cash J J, Kubo T, Bapat A P, Sumerlin B S. Macromolecules, 2015, 48: 2098 − 2106

    10. [10]

      Cromwell O R, Chung J, Guan Z. J Am Chem Soc, 2015, 137: 6492 − 6495

    11. [11]

      Lei Z Q, Xiang H P, Yuan Y J, Rong M Z, Zhang M Q. Chem Mater, 2014, 26: 2038 − 2046

    12. [12]

      Xu W M, Rong M Z, Zhang M Q. J Mater Chem A, 2016, 4: 10683 − 10690

    13. [13]

      Pepels M, Filot I, Klumperman B, Goossens H. Polym Chem, 2013, 4: 4955 − 4965

    14. [14]

      Fritz U F, Delius M. Chem Commun, 2016, 52: 6363 − 6366

    15. [15]

      Ji S, Cao W, Yu Y, Xu H. Angew Chem Int Ed, 2014, 53: 6781 − 6785

    16. [16]

      Kildahl N K. J Chem Educ, 1995, 72: 423 − 424

    17. [17]

      Granger P, Chapelle S, Mcwhinnie W R, Rubaie A. J Organomet Chem, 1981, 220: 149 − 158

    18. [18]

      Kumar A, Singh A K. Inorg Chem Commun, 2007, 10: 1315 − 1317

  • 加载中
    1. [1]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    4. [4]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    5. [5]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    6. [6]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    9. [9]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    16. [16]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    17. [17]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    18. [18]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    19. [19]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    20. [20]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

Metrics
  • PDF Downloads(0)
  • Abstract views(152)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return